Chứng minh rằng tập hợp các điểm cách đều ba đỉnh của một tam giác \(ABC\) là đường vuông góc với mặt phẳng \((ABC)\) và đi qua tâm đường tròn ngoại tiếp tam giác \(ABC\).
Chiều thuận: Lấy một điểm \(M\) bất kì trong không gian sao cho \(MA = MB = MC\). Từ \(M\) kẻ \(MO\) vuông góc với \((ABC)\). Chứng minh \(OA=OB=OC\).
Chiều ngược: Lấy một điểm \(M’ ∈ d\), nối \(M’A, M’B, M’C\), cho \(O\) là tâm đường tròn ngoại tiếp tam giác \(ABC\), chứng minh \(M'A=M'B=M'C\).
Lời giải chi tiết
Lấy một điểm \(M\) bất kì trong không gian sao cho \(MA = MB = MC\). Từ \(M\) kẻ \(MO\) vuông góc với \((ABC)\). Các tam giác vuông \(MOA\), \(MOB\), \(MOC\) bằng nhau, suy ra \(OA = OB = OC\).
Do đó \(O\) là tâm đường tròn ngoại tiếp tam giác \(ABC\). Vậy các điểm \(M\) cách đều ba đỉnh của tam giác \(ABC\) nằm trên đường thẳng \(d\) đi qua tâm \(O\) của đường tròn ngoại tiếp tam giác \(ABC\) và vuông góc với mặt phẳng \((ABC)\).
Ngược lại, lấy một điểm \(M’ ∈ d\), nối \(M’A, M’B, M’C\),
Do \(M’O\) chung và \(OA = OB = OC\) nên các tam giác vuông \(M’OA, M’OB, M’OC\) bằng nhau, suy ra \(M’A = M’B = M’C\),
Tức là điểm \(M’\) cách đều ba đỉnh \(A, B, C\) của tam giác \(ABC\).
Kết luận: Tập hợp các điểm cách đều ba đỉnh của tam giác \(ABC\) là đường thẳng vuông góc với mặt phẳng \((ABC)\) và đi qua tâm đường tròn ngoại tiếp tam giác \(ABC\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK