gửi đến bạn những kiến thức cần nhớ về khoảng cách giữa hai đường thẳng chéo nhau trong chương trình toán lớp 11. Bài viết cũng đề cập đến những vấn đề liên quan như góc giữa 2 đường thẳng chéo nhau và bài tập khoảng cách giữa 2 đường thẳng chéo nhau.
- Khoảng cách giữa hai đường thẳng chéo nhau là độ dài đoạn vuông góc chung của hai đường thẳng đó.
- Kí hiệu: \(d (a,b) = MN\)
Trong đó
- Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa một trong hai đường thẳng đó và mặt phẳng song song với nó chứa đường thẳng còn lại.
- Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó.
- Kí hiệu: \(d (a,b) = d(a, (Q)) = d(b, (P)) = d ((P),(Q))\)
Trong đó
Để giải bài tập khoảng cách giữa 2 đường thẳng chéo nhau ta có thể dùng một trong các cách như sau
Dựa đoạn vuông góc chung MN của a và b, khi đó d (a, b) = MN. Dưới đây là một số trường hợp hay gặp khi ta dựng đoạn vuông góc chung của hai đường thẳng chéo nhau.
- Bước 1: Chọn mặt phẳng \((\alpha)\) chưa b và vuông góc với a tại \(I\)
- Bước 2: Trong mặt phẳng \((\alpha)\) kẻ \(IJ \perp b\)
Khi đó \(IJ\) là đoạn vuông góc chung, \(d (a,b) = IJ\)
- Bước 1: Chọn \((\alpha \perp a)\) tại \(I\)
- Bước 2: Tìm hình chiều \(d\) của b xuống mặt phẳng \((\alpha)\)
- Bước 3: Trong mặt phẳng \((\alpha)\) dựng \(IJ \perp d\), từ \(J\) ta dựng đường thẳng song song với a cắt b tại H, từ H dựng \(HM//IJ\).
Khi đó \(HM\) là đoạn vuông góc chung, \(d (a, b) = HM = IJ\)
Chọn mặt phẳng \((\alpha)\) chứa đường thẳng a và song sóng với b.
Khi đó \(d (a, b) = d(b, (\alpha))\)
Dựng hai mặt phẳng song song và lần lượt chứa hai đường thẳng. Khoảng cách giữa hai mặt phẳng đó là khoảng cách cần tìm.
Sử dụng phương pháp vecto
a) MN là đoạn vuông góc chung của AB và CD khi và chỉ khi:
b) Trong \((\alpha)\) có 2 vecto không cùng phương \(\vec {u_1}, \vec{u_2}\) thì \(OH = d(O, (\alpha))\) khi và chỉ khi
Gọi lần lượt hai đường thẳng chéo nhau là a và b
Để xác định góc giữa 2 đường thẳng chéo nhau, ta sử dụng các cách sau
Ta chọn hai đường thẳng cắt nhau a' và b' lần lượt song song với a và b.
Khi đó \(\widehat{a, b} = \widehat{a', b'}\)
Chọn một điểm A bất kì thuộc a, từ đó kẻ một đường thẳng b' qua A và song song với b.
Khi đó \(\widehat{a, b} = \widehat{a, b'}\)
Dưới đây là một số bài tập khoảng cách giữa 2 đường thẳng chéo nhau mà sưu tầm, tổng hợp được.
Bài tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SA = a, SB =\(a\sqrt{3}\) và mặt phẳng (SAB) vuông góc với mặt phẳng đáy. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC. Tính cosin của góc giữa hai đường thẳng SM, DN.
Đáp án:
\(cos (\widehat{SM, ND}) = \dfrac {\dfrac{a}{\sqrt{5}}}{a}\)
Bài tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và \(SC = a\sqrt{2}\). Gọi H và K lần lượt là trung điểm của các cạnh AB và AD.
1) Chứng minh \(SH \perp (ABCD), AC \perp (SHK)\)
2) Tính số đo góc giữa SC với mặt phẳng (SHD)
Hướng dẫn:
1) SB = BC = a ⇒ \(SC ^2 = SB^2 + BC^2\)
Suy ra, \(\Delta SBC \perp B\)
\(CB \perp (SAB) \) ⇒ \(CS \perp SH\), mặt khác \(SH \perp AB\) ⇒ \(SH \perp (ABCD) \)
Ta có: \(HK // BD \) ⇒ \(HK \perp AC\)
Suy ra \(AC \perp (SHK)\)
2) \(cos ( \widehat{CSI}) = \dfrac {SI}{SC}= \dfrac {\sqrt{5}}{\sqrt{3}}\)
Xem thêm>>> Khoảng cách giữa 2 đường thẳng chéo nhau
Công thức tính góc giữa 2 đường thẳng trong không gian
Trên đây là bài viết tổng hợp kiến thức bạn cần có về khoảng cách giữa hai đường thẳng chéo nhau mà muốn gửi đến bạn. Mong rằng bài viết sẽ giúp ích cho bạn trong quá trình học tập, chúc bạn học tập tốt
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK