Cho hình chóp \(S. ABCD\) có \(AB\) và \(CD\) không song song. Gọi \(M\) là một điểm thuộc miền trong của tam giác \(SCD\).
a) Tìm giao điểm \(N\) của đường thẳng \(CD\) và mặt phẳng \((SBM)\).
b) Tìm giao tuyến của hai mặt phẳng \((SBM)\) và \((SAC)\).
c) Tìm giao điểm \(I\) của đường thẳng \(BM\) và mặt phẳng \((SAC)\).
d) Tìm giao điểm \(P\) của \(SC\) và mặt phẳng \((ABM)\), từ đó suy ra giao tuyến của hai mặt phẳng \((SCD)\) và \((ABM)\).
a) Kéo dài SM cắt CD tại N.
b) Tìm hai điểm chung của hai mặt phẳng \((SBM)\) và \((SAC)\).
c) Tìm một đường thẳng nằm trong (SAC) cắt BM tại I.
d) Tìm một đường thẳng nằm trong (ABM) cắt SC tại P. Xác định hai điểm chung của hai mặt phẳng \((SCD)\) và \((ABM)\).
Lời giải chi tiết
a) Trong \((SCD)\) kéo dài \(SM\) cắt \(CD\) tại \(N\). Do đó: \(N=CD\cap(SBM)\)
b) \((SBM) ≡ (SBN)\).
Trong \((ABCD)\) gọi \(O=AC\cap BN\)
Do đó: \(SO=(SAC)\cap(SBM)\).
c) Trong \((SBN)\) gọi \(I\) là giao của \(MB\) và \(SO\). Mà \(SO \subset \left( {SAC} \right)\)
Do đó: \(I=BM\cap (SAC)\)
d) Trong \((ABCD)\) , gọi \(K = AB \cap CD\).
Trong \((SCD)\), gọi \(P= MK\cap SC\). Lại có \(MK \subset \left( {ABM} \right)\).
Do đó: \(P=SC\cap (ABM)\)
Trong \((SDC)\) gọi \(Q=MK\cap SD\), \(MK \subset \left( {ABM} \right) \Rightarrow Q = SD \cap \left( {ABM} \right)\).
\( \Rightarrow PQ \subset \left( {ABM} \right),\,\,PQ \subset \left( {SCD} \right) \)\(\Rightarrow PQ = \left( {SCD} \right) \cap \left( {ABM} \right)\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK