Trong các dãy số sau đây, dãy số nào là cấp số cộng? Tính số hạng đầu và công sai của nó:
a) \(u_n= 5 - 2n\); b) \(u_n= \frac{n}{2}- 1\);
c) \(u_n= 3^n\); d) \(u_n= \frac{7-3n}{2}\)
Sử dụng định nghĩa cấp số cộng:
Cấp số cộng là một dãy số (hữu hạn hoặc vô hạn) trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi d.
Ta chứng minh \({u_{n + 1}} - {u_n} = const\).
Lời giải chi tiết
a) Với mọi \(n\in {\mathbb N}^*\) ta có:
\({u_{n + 1}} - {u_n} = 5 - 2\left( {n + 1} \right) - \left( {5 - 2n} \right) \)
\(= 5 - 2n + 2 - 5 + 2n = 2\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK