Từ định luật III Kê-ple, hãy suy ra hệ quả: Bình phương của vận tốc của một hành tinh tại vị trí trên quỹ đạo thì tỷ lệ nghịch với khoảng cách từ hành tinh đó đến Mặt Trời.
\({{{R_1}} \over {{R_2}}} = {{v_2^2} \over {v_1^2}}\)
Kết quả này phù hợp với nội dung định luật II Kê-ple. Nó có mâu thuẫn với công thức \(v=\omega .r\) chuyển động tròn hay không?
\(\eqalign{ & {{r_1^3} \over {T_1^2}} = {{r_2^3} \over {T_2^2}} \Leftrightarrow {{r_1^3} \over {{{4{\pi ^2}r_1^2} \over {v_1^2}}}} = {{r_2^3} \over {{{4{\pi ^2}r_2^2} \over {v_2^2}}}} \cr & \Leftrightarrow {r_1}v_1^2 = {r_2}v_2^2 \cr & \Leftrightarrow {{{r_1}} \over {{r_2}}} = {{v_2^2} \over {v_1^2}} \cr} \)
Công thức :\({{{r_1}} \over {{r_2}}} = {{v_2^2} \over {v_1^2}}\) hay \({r_1}v_1^2 = {r_2}v_2^2\)
\( \Leftrightarrow \)Với chuyển động của một hành tinh quanh Mặt Trời thì tích:
\(r{v^2} = \) hằng số (1)
Còn công thức \(v=\omega .r\) là liên hệ giữa ba đại lượng không thay đổi của một chuyển động tròn đều, nó có thể viết thành:
\(r{v^2} = {\omega ^2}{r^3}\) hay \(r{v^2}\) là hằng số (2).
Từ (1) và (2) ta thấy hai công thức không mâu thuẫn với nhau, (2) chỉ là trường hợp riêng của (1) mà thôi.
Vật lý học (tiếng Anh:physics, từ tiếng Hi Lạp cổ: φύσις có nghĩa là kiến thức về tự nhiên) là một môn khoa học tự nhiên tập trung vào sự nghiên cứu vật chất và chuyển động của nó trong không gian và thời gian, cùng với những khái niệm liên quan như năng lượng và lực.Vật lí học là một trong những bộ môn khoa học lâu đời nhất, với mục đích tìm hiểu sự vận động của vũ trụ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK