a) Viết phương trình đường tròn tiếp xúc với hai trục tọa độ và đi qua điểm
b) Viết phương trình đường tròn đi qua hai điểm (1, 1); (1, 4) và tiếp xúc với trục Ox.
a) Vì M(2; 1) nằm trong góc phần tư thứ nhất nên đường tròn cần tìm (C) cũng ở trong góc phần tư thứ nhất.
(C) tiếp xúc với Ox và Oy nên (C) có tâm I (a; a) và bán kính R= a ( a > 0 ).
Do đó (C) có phương trình là: \({\left( {x - a} \right)^2} + {\left( {y - a} \right)^2} = {a^2}\)
Vì \(M(2;1)\in(C)\) nên
\(\eqalign{
& {\left( {2 - a} \right)^2} + {\left( {1 - a} \right)^2} = {a^2} \Leftrightarrow {a^2} - 6a + 5 = 0\,\,(C) \cr
& \Leftrightarrow \left[ \matrix{
a = 1 \hfill \cr
a = 5 \hfill \cr} \right. \cr} \)
+) Với \(a =1\) ta có (C): \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 1.\)
+) Với \(a=5\) ta có \((C):{\left( {x - 5} \right)^2} + {\left( {y - 5} \right)^2} = 25.\)
b) Phương trình đường thẳng Ox: \(y = 0\).
Giả sử: \(I (a; b)\) là tâm của đường tròn cần tìm.
Ta có: \(R = d\left( {I;{\rm{Ox}}} \right) = |b|\)
Phương trình đường tròn có dạng
\((C):{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {b^2}\)
Vì \(\left( {1;1} \right) \in (C)\) và \(\left( {1;4} \right) \in (C)\) nên ta có hệ:
\(\left\{ \matrix{
{\left( {1 - a} \right)^2} + {\left( {1 - b} \right)^2} = {b^2}\,\,\,(\,1\,) \hfill \cr
{\left( {1 - a} \right)^2} + {\left( {4 - b} \right)^2} = {b^2}\,\,\,(2) \hfill \cr} \right.\)
Từ hệ trên ta suy ra: \({\left( {1 - b} \right)^2} = {\left( {4 - b} \right)^2}\)\(\Leftrightarrow b = {5 \over 2}.\)
Thay \(b = {5 \over 2}\) vào (1) ta được: \(a = 3, a = -1\)
Vậy có hai phương trình đường tròn thỏa mãn yêu cầu bài toán
\({\left( {x - 3} \right)^2} + {\left( {y - {5 \over 3}} \right)^2} = {{25} \over 4};\)
\({\left( {x + 1} \right)^2} + {\left( {y - {5 \over 2}} \right)^2} = {{25} \over 4}.\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK