Tìm hình chiếu vuông góc của điểm P(3, -2) trên đường thẳng trong mỗi trường hợp sau
a)
\(\Delta :\left\{ \matrix{
x = t \hfill \cr
y = 1 \hfill \cr} \right.\)
b) \(\Delta :{{x - 1} \over 3} = {y \over { - 4}}\)
c) \(\Delta :5x - 12y + 10 = 0.\)
a) \(\Delta :y = 1\) có vectơ pháp tuyến \(\overrightarrow n \left( {0;1} \right).\)
Đường thẳng \(\Delta '\) vuông góc với \(\Delta \) nên có vectơ pháp tuyến là: \(\overrightarrow {n'} \left( {1;0} \right)\)
Đường thẳng \(\Delta '\) qua P và vuông góc với \(\Delta \) có phương trình tổng quát là:
\(1.\left( {x - 3} \right) = 0 \Leftrightarrow x = 3.\)
Gọi Q là hình chiếu của P trên \(\Delta \) do đó Q là giao điểm của \(\Delta \) và \(\Delta '\) , tọa độ của Q là nghiệm của hệ sau:
\(\left\{ \matrix{
x = 3 \hfill \cr
y = 1 \hfill \cr} \right.\)
Vậy Q(3, 1)
b) \(\Delta \) có vectơ chỉ phương \(\overrightarrow u \left( {3; - 4} \right)\) . Đường thẳng \(\Delta '\) qua P và vuông góc với nên có vectơ pháp tuyến \(\overrightarrow u \left( {3; - 4} \right)\) nên có phương trình tổng quát là:
\(\eqalign{
& 3.\left( {x - 3} \right) - 4.\left( {y + 2} \right) = 0 \cr
& \Leftrightarrow 3x - 4y - 17 = 0. \cr} \)
Gọi Q là hình chiếu của P trên \(\Delta \) do đó Q là giao điểm của \(\Delta \) và \(\Delta '\) , tọa độ của Q là nghiệm của hệ sau:
\(\left\{ \matrix{
{{x - 1} \over 3} = {y \over { - 4}} \hfill \cr
3x - 4y - 17 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
- 4x - 3y + 4 = 0 \hfill \cr
3x - 4y - 17 = 0 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{
x = {{67} \over {25}} \hfill \cr
y = - {{56} \over {25}} \hfill \cr} \right.\)
Vậy \(Q\left( {{{67} \over {25}}; - {{56} \over {25}}} \right).\)
c) \(\Delta \) có vectơ pháp tuyến \(\overrightarrow n \left( {5; - 12} \right).\)
Đường thẳng \(\Delta '\) vuông góc với \(\Delta \) nên có vectơ chỉ phương là \(\overrightarrow n \left( {5; - 12} \right).\)
Đường thẳng \(\Delta '\) qua P và vuông góc với \(\Delta \) có phương trình chính tắc là:
\({{x - 3} \over 5} = {{y + 2} \over { - 12}} \Leftrightarrow - 12x - 5y + 26 = 0\)
Gọi Q là hình chiếu của P trên \(\Delta \) do đó Q là giao điểm của \(\Delta \) và \(\Delta '\) , tọa độ của Q là nghiệm của hệ sau:
\(\left\{ \matrix{
5x - 12x + 10 = 0 \hfill \cr
- 12x - 5y + 26 = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = {{262} \over {169}} \hfill \cr
y = {{250} \over {169}} \hfill \cr} \right.\)
Vậy \(Q\left( {{{262} \over {169}};{{250} \over {169}}} \right).\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK