Cho hai điểm \(P(4;0),Q(0; - 2)\) .
a) Viết phương trình tổng quát của đường thẳng đi qua điểm \(A(3;2)\) và song song với đường thẳng PQ;
b) Viết phương trình tổng quát của đường trung trực của đoạn thẳng PQ.
a) Gọi \(\Delta \) là đường thẳng đi qua điểm \(A(3;2)\) và song song với đường thẳng PQ
\(\overrightarrow {PQ} \left( { - 4; - 2} \right)\)
Gọi \(\overrightarrow n \) là một véc tơ pháp tuyến của đường thẳng PQ do đó: \(\overrightarrow n .\overrightarrow {PQ} = \overrightarrow 0 \)
Ta chọn \(\overrightarrow n (1; - 2)\)
\(\Delta \) song song với đường thẳng PQ nên véc tơ pháp tuyến của đường thẳng PQ cũng là véc tơ pháp tuyến của \(\Delta \)
Phương trình tổng quát của \(\Delta \) đi qua A(3, 2) và có véc tơ pháp tuyến \(\overrightarrow n (1; - 2)\) là:
\(1.(x - 3) - 2(y - 2) = 0 \Leftrightarrow x - 2y + 1 = 0\)
b) Gọi \(I({x_I};{y_I})\) là trung điểm của PQ
Tọa độ điểm I là nghiệm của hệ sau:
\(\left\{ \matrix{
{x_I} = {{{x_P} + {x_Q}} \over 2} \hfill \cr
{y_I} = {{{y_P} + {y_Q}} \over 2} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{x_I} = {{4 + 0} \over 2} \hfill \cr
{y_I} = {{0 + ( - 2)} \over 2} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{x_I} = 2 \hfill \cr
{y_I} = - 1 \hfill \cr} \right.\)
Vậy \(I(2; - 1)\)
Gọi d là đường thẳng trung trực của đoạn thẳng PQ
Vì d là đường thẳng trung trực của PQ nên d đi qua trung điểm I của đoạn thẳng PQ và vuông góc với PQ
Phương trình đường thẳng d đi qua I(-2, 1) và nhận \(\overrightarrow {PQ} \left( { - 4; - 2} \right)\) làm véc tơ pháp tuyến là:
\( - 4.(x - 2) - 2.(y + 1) = 0 \Leftrightarrow - 4x - 2y + 6 = 0\)
\(\Leftrightarrow 2x + y - 3 = 0\)
.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK