Bài 54 trang 216 SGK Đại số 10 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài
Quỹ đạo của một vật được ném lên từ gốc O, với vận tốc ban đầu là v(m/s) theo phương hợp với trục hoành (nằm ngang) Ox một góc α , \(0 < \alpha  < {\pi  \over 2}\) là parabol có phương trình :

 \(y =  - {g \over {2{v^2}{{\cos }^2}\alpha }}{x^2} + (\tan \alpha )x\)                                                      

Trong đó g là gia tốc trọng trường (g ≈ 9,8m/s2) (giả sử lực cản của không khí là không đáng kể).

Gọi tầm xa của quỹ đạo là khoảng cách từ O đến giao điểm khác O của quỹ đạo với Ox.

a) Tính tầm xa theo α (và v)

b) Khi v không đổi, α thay đổi trong khoảng \((0,\,{\pi  \over 2})\) , hỏi giá trị α nào thì tầm xa của quỹ đạo đạt được giá trị lớn nhất? Tính giá trị đó theo v. Khi v = 80m/s. Hãy tính giá trị lớn nhất đó (chính xác đến hàng đơn vị).

 

Hướng dẫn giải

a) Gọi x là tầm xa của quỹ đạo, thì: 

\(\left\{ \matrix{
x > 0 \hfill \cr
- {{g{x^2}} \over {2{v^2}{{\cos }^2}\alpha }} + (\tan \alpha )x = 0 \hfill \cr} \right.\)

tức là: \(x = {{2{v^2}\sin \alpha \cos \alpha } \over g} = {{{v^2}} \over g}\sin 2\alpha \)

b) x đạt giá trị lớn nhất khi và chỉ khi \(\sin 2\alpha  = 1 \Rightarrow \alpha  = {\pi  \over 4}\)

Khi đó: \(x = {{{v^2}} \over g}\)

Với \(v = 80m/s\) thì \({{{v^2}} \over g} \approx {{{{80}^2}} \over {9,8}} \approx 653(m)\)

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 10

Lớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK