Giải bất phương trình và bất phương trình
a) |x + 1| + |x – 1| = 4
b) \({{|2x - 1|} \over {(x + 1)(x - 2)}} > {1 \over 2}\)
a) Ta có bảng xét dấu:
i) Với \(x < -1\), ta có (1) \(⇔ - x – 1 – x + 1 = 4 ⇔ x = -2\) (nhận)
ii) Với \(-1 ≤ x ≤ 1\), ta có: (1) \(⇔ x + 1 – x + 1 = 4 ⇔ 2 = 4\) (vô nghiệm)
iii) Với \(x > 1\), ta có (1) \(⇔ x + 1 + x – 1 = 4 ⇔ x = 2\) (nhận)
Vậy S = {-2, 2}
b) Ta có:
i) Nếu \(x \le {1 \over 2}\) thì bất phương trình trở thành: \({{ - 2x + 1} \over {(x + 1)(x - 2)}} > {1 \over 2}\)
Ta có:
\(\eqalign{
& {{ - 2x + 1} \over {(x + 1)(x - 2)}} > {1 \over 2}\cr& \Leftrightarrow {{2( - 2x + 1) - (x + 1)(x - 2)} \over {2(x + 1)(x - 2)}} > 0 \cr
& \Leftrightarrow {{ - {x^2} - 3x + 4} \over {2(x + 1)(x - 2)}} > 0 \Leftrightarrow {{(x - 1)(x + 4)} \over {2(x + 1)(x - 2)}} < 0 \cr} \)
Lập bảng xét dấu:
Trường hợp này ta có: \(-4 < x < -1\)
ii) Nếu \(x > {1 \over 2}\) thì bất phương trình đã cho trở thành: \({{2x - 1} \over {(x + 1)(x - 2)}} > {1 \over 2}\)
Ta có:
\(\eqalign{
& {{2x - 1} \over {(x + 1)(x - 2)}} > {1 \over 2} \cr&\Leftrightarrow {{2(2x - 1) - (x + 1)(x - 2)} \over {2(x + 1)(x - 2)}} > 0 \cr
& \Leftrightarrow {{x(x - 5)} \over {2(x + 1)(x - 2)}} < 0 \cr} \)
Lập bảng xét dấu trên nửa khoảng \(({1 \over 2}, + \infty )\)
Trong trường hợp này ta có: \(2 < x < 5\)
Vậy \(S = (-4, -1) ∪ (2, 5)\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK