Giải và biện luận các hệ phương trình
a)
\(\left\{ \matrix{
x + y = 4 \hfill \cr
xy = m \hfill \cr} \right.\)
b)
\(\left\{ \matrix{
3x - 2y = 1 \hfill \cr
{x^2} + {y^2} = m \hfill \cr} \right.\)
a) Theo định lý Vi-ét đảo, x và y là nghiệm của hệ phương trình:
z2 – 4z + m = 0 (1)
Ta có: Δ’ = 4 – m
Do đó:
+ Nếu m > 4 thì Δ’ < 0 thì phương trình (1) vô nghiệm nên hệ đã cho vô nghiệm
+ Nếu m = 4 thì Δ’ = 0 thì phương trình (1) có một nghiệm kép z = 2 nên hệ đã cho có một nghiệm duy nhất \((x, y) = (2, 2)\)
+ Nếu m < 4 thì Δ’ > 0 thì phương trình (1) có hai nghiệm phân biệt \(z = 2 \pm \sqrt {4 - m} \) nên hệ đã cho có hai nghiệm:
\(\left\{ \matrix{
x = 2 - \sqrt {4 - m} \hfill \cr
y = 2 + \sqrt {4 - m} \hfill \cr} \right. \text{ và } \left\{ \matrix{
x = 2 + \sqrt {4 - m} \hfill \cr
y = 2 - \sqrt {4 - m} \hfill \cr} \right.\)
b) Ta có:
\(\left\{ \matrix{
3x - 2y = 1 \hfill \cr
{x^2} + {y^2} = m \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2y = 3x - 1 \hfill \cr
4{x^2} + 4{y^2} = 4m \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{
2y = 3x - 1 \hfill \cr
4{x^2} + {(3x - 1)^2} = 4m \hfill \cr} \right.\)
Xét riêng phương trình 4x2 + (3x – 1)2 = 4m ⇔ 13x2 – 6x – 4m + 1= 0 (2)
Phương trình (2) có biệt thức thu gọn Δ’ = 4(13m – 1).
Do đó:
+ Nếu \(m < {1 \over {13}} \Rightarrow \Delta ' < 0\) , phương trình (2) vô nghiệm nên hệ vô nghiệm.
+ Nếu \(m = {1 \over {13}} \Rightarrow \Delta ' = 0\) , phương trình (2) có một nghiệm \(x = {3 \over {13}}\) nên hệ có nghiệm là
+ Nếu \(m > {1 \over {13}} \Rightarrow \Delta ' > 0\) thì phương trình (2) có hai nghiệm: \({x_{1,2}} = {{3 \pm 2\sqrt {13m - 1} } \over {13}}\) , nên hệ có hai nghiệm như sau:
\(\eqalign{
& ({x_1},{y_1}) = ({{3 - 2\sqrt {13m - 1} } \over {13}};\,{{ - 2 - 3\sqrt {13m - 1} } \over {13}}) \cr
& ({x_2},{y_2})\, = \,({{3 + 2\sqrt {13m - 1} } \over {13}};\,{{ - 2 + 3\sqrt {13m - 1} } \over {13}}) \cr} \)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK