a) \(y = \,|{x^2} + \sqrt 2 x|\)
b) y = -x2 + 2|x| + 3
c) y = 0,5x2 - |x – 1| + 1
a) Vẽ đồ thị hàm số \(y = \,{x^2} + \sqrt 2 x\) (P1) rồi suy ra đồ thị hàm số: \(y = \,|{x^2} + \sqrt 2 x|\) (P)
Hoành độ của đỉnh: \({x_0} = - {b \over {2a}} = {{ - \sqrt 2 } \over 2} \Rightarrow {y_0} = {1 \over 2} - 1 = - {1 \over 2}\)
Đỉnh \(I( - {{\sqrt 2 } \over 2}; - {1 \over 2})\)
Bảng giá trị:
x
-1
0
y
0
x
-1
0
y
0
Đồ thị hàm số:
Ta giữ nguyên phần đồ thị trên trục hoành và lấy đối xứng phần đồ thì của hàm số \(y = \,{x^2} + \sqrt 2 x\) phía dưới trục hoành qua Ox ta được đồ thị của hàm \(y = \,|{x^2} + \sqrt 2 x|\) ( đồ thị là phần nét liền trên hình vẽ)
Bảng biến thiên:
b) Vẽ đồ thị hàm số y = -x2 + 2x + 3 (P1) rồi suy ra đồ thị hàm số: y = -x2 + 2|x| + 3 (P)
Hoành độ đỉnh: \({x_0} = - {b \over {2a}} = {{ - 2} \over { - 2}} = 1 \Rightarrow {y_0} = 4\)
Đỉnh I (1, 4)
Bảng giá trị:
x
0
1
2
y
3
4
3
x
0
1
2
y
3
4
3
Đồ thị hàm số:
Bảng biến thiên
c) y = 0,5x2 - |x – 1| + 1
Ta có:
\(y = \left\{ \matrix{
0,5{x^2} - x + 2\,\,\,\,\,\,\,;x \ge 1 \hfill \cr
0,5{x^2} + x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,;x < 1 \hfill \cr} \right.\)
Đồ thị hàm số:
Bảng biến thiên:
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK