Câu 19 trang 14 SGK Đại số 10 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Xác định xem các mệnh đề sau đây đúng hay sai và nêu mệnh đề phủ định của mỗi mệnh đề đó.

a) \(\exists x\, \in \,R,{x^2} = 1\)

b) \(\exists n\, \in \,N,\,n(n + 1)\) là một số chính phương

c) ∀x ∈ R, (x – 1)2 ≠ x – 1

d) ∀x ∈ N, n2 + 1 không chia hết cho 4.

Hướng dẫn giải

a) Mệnh đề “\(\exists x\, \in \,R,{x^2} = 1\)” là đúng vì x = 1 thì 12 = 1

Mệnh đề phủ định là: “∀x ∈ R, x2 ≠ 1”

b) Mệnh đề “\(\exists n\, \in \,N,\,n(n + 1)\)"  là một số chính phương, đúng vì:

Với n = 0; n(n + 1) = 0 là một số chính phương

Mệnh đề phủ định là: “∀x ∈ N, n(n + 1) không là số chính phương.

c)  Mệnh đề “∀x ∈ R, (x – 1)2 ≠ x – 1” là sai vì:

x = 1 : (1 – 1)2 = 1 – 1

Mệnh đề phủ định là “\(\exists x \in R;\,{(x - 1)^2} = x - 1\) ”

d) Mệnh đề “∀x ∈ N, n2 + 1 không chia hết cho 4” là đúng vì:

Với n = 2k (k ∈ N) thì n2 + 1 lẻ nên không chia hết cho 4.

Với n = 2k + 1 (k ∈ N) thì n2 + 1 = (2k + 1)2 + 1 = 4k2 + 4k + 2 không chia hết cho 4.

Mệnh đề phủ định là: “\(\exists n \in N,\,{n^2} + 1\)  chia hết cho 4”.

 

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 10

Lớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK