Cho hình chữ nhật \(ABCD\). Biết các đỉnh \(A(5; 1), C(0; 6)\) và phương trình \(CD: x + 2y – 12 = 0.\)
Tìm phương trình các đường thẳng chứa các cạnh còn lại.
Cạnh \(AB\) là đường thẳng đi qua \(A( 5; 1)\) và song song với \(CD\).
Vì \(CD\) có phương trình \(x + 2y – 12 = 0\) nên phương trình của \(AB\) có dạng: \(x + 2y + m = 0\)
\(AB\) đi qua \(A(5; 1)\) nên ta có: \(5 + 2.1 + m = 0 ⇒ m = -7\)
Vậy phương trình của \(AB\) là: \(x + 2y – 7 = 0.\)
\(AD\) là đường thẳng qua \(A\) và vuông góc với \(CD\).
Phương trình của \(CD\) là: \(x + 2y – 12 = 0\) nên phương trình của \(AD\) có dạng: \(2x – y + n = 0\)
\(AD\) đi qua \(A(5, 1)\) cho ta: \(2.5 - 1 + n = 0 ⇒ n = -9\)
Phương trình của \(AD\): \(2x - y - 9 = 0\)
\(CB\) là đường thẳng qua \(C\) và song song với \(AD\) nên phương trình của \(CB\) có dạng: \(2x – y + p = 0\)
\(CB\) đi qua \(C (0; 6)\) nên: \( 2.0 – 6 + p = 0 ⇒ p = 6\)
Phương trình của \(CB\) là: \(2x – y = 6 = 0\)
Vậy \(AB: x +2 y – 7 = 0\)
\(BC : 2x - y + 6 = 0\)
\(AD : 2x – y – 9 = 0\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK