Cho hai đường tròn \({C_1}({F_1};{R_1})\) và \({C_2}({F_2};{R_2})\). \(C_1\) nằm trong \(C_2\) và \(F_1≠ F_2\). Đường tròn \((C)\) thay đổi luôn tiếp xúc ngoài với \(C_1\) và tiếp xúc trong với \(C_2\).Hãy chứng tỏ rằng tâm \(M\) của đường tròn \((C)\) di động trên một elip.
Gọi \(R\) là bán kính của đường tròn \((C)\)
\((C)\) và \(C_1\) tiếp xúc ngoài với nhau, cho ta:
\(MF_1= R_1+ R\) (1)
\((C)\) và \(C_2\) tiếp xúc trong với nhau, cho ta:
\(MF_2= R_2- R\) (2)
Từ (1) VÀ (2) ta được
\(M{F_1} + M{F_2} = {R_1} + {R_2} = R\) không đổi.
Điểm M có tổng các khoảng cách \(M{F_1} + M{F_2} \) đến hai điểm cố định \(F_1\) và \(F_2\) bằng một độ dài không đổi \({R_1} + {R_2}.\)
Vậy tập hợp điểm \(M\) là đường elip, có các tiêu điểm \(F_1\) và \(F_2\) và có tiêu cự \(F_1F_2= R_1+R_2.\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK