Giải các bất phương trình
a) \(\frac{2}{x-1}\leq \frac{5}{2x-1};\)
b) \(\frac{1}{x+1}<\frac{1}{(x-1)^{2}};\)
c) \(\frac{1}{x}+\frac{2}{x+4}<\frac{3}{x+3};\)
d) \(\frac{x^{2}-3x+1}{x^{2}-1}<1.\)
Ta dùng các phương pháp đại số để biến đổi bất phương trình về dạng: f(x) > 0 hoặc f(x) < 0 sau đó ta đi xét dấu của biểu thức f(x), để biết biểu thức f(x) nhận giá trị dương, âm với những giá trị nào của x.
Bảng xét dấu của nhị thức bậc nhất được thể hiện qua bảng sau:
Lời giải chi tiết
a) \(\frac{2}{x-1}\leq \frac{5}{2x-1}\)
\(\Leftrightarrow f(x) = \frac{2}{x-1}-\frac{5}{2x-1}=\frac{-x+3}{(2x-1)(x-1)}\)\(\leq 0\).
Xét dấu của \(f(x)\) ta được bảng xét dấu:
Ta có:
\(\begin{array}{l}
- x + 3 = 0 \Leftrightarrow x = 3\\
2x - 1 = 0 \Leftrightarrow x = \frac{1}{2}\\
x - 1 = 0 \Leftrightarrow x = 1\\
\left( {\frac{1}{2} < 1 < 3} \right)
\end{array}\)
Tập nghiệm của bất phương trình là:
\(T = \left ( \frac{1}{2};1 \right ) ∪ [3; +∞)\).
b) \(\frac{1}{x+1}<\frac{1}{(x-1)^{2}}\)
\(\begin{array}{l}
f\left( x \right) = \frac{{{{\left( {x - 1} \right)}^2} - \left( {x + 1} \right)}}{{\left( {x + 1} \right){{\left( {x - 1} \right)}^2}}} = \frac{{{x^2} - 2x + 1 - x - 1}}{{\left( {x + 1} \right){{\left( {x - 1} \right)}^2}}}\\
= \frac{{{x^2} - 3x}}{{\left( {x + 1} \right){{\left( {x - 1} \right)}^2}}} = \frac{{x\left( {x - 3} \right)}}{{\left( {x + 1} \right){{\left( {x - 1} \right)}^2}}} < 0
\end{array}\).
\(f(x)\) không xác định với \(x = ± 1\).
Ta có: \(\begin{array}{l}
x = 0\\
x - 3 = 0 \Leftrightarrow x = 3\\
x + 1 = 0 \Leftrightarrow x = - 1\\
{\left( {x - 1} \right)^2} = 0 \Leftrightarrow x = 1\\
\left( { - 1 < 0 < 1 < 3} \right)
\end{array}\)
Xét dấu của \(f(x)\) ta được bảng xét dấu:
Tập nghiệm của bất phương trình là:
\(T = (-∞; - 1) ∪ (0; 1) ∪ (1; 3)\).
c) \(\frac{1}{x}+\frac{2}{x+4}<\frac{3}{x+3} \)\(\Leftrightarrow f(x) = \frac{1}{x}+\frac{2}{x+4}-\frac{3}{x+3}\)
\(\begin{array}{l}
= \frac{{\left( {x + 4} \right)\left( {x + 3} \right)}}{{x\left( {x + 4} \right)\left( {x + 3} \right)}} + \frac{{2x\left( {x + 3} \right)}}{{x\left( {x + 4} \right)\left( {x + 3} \right)}} \\ - \frac{{3x\left( {x + 4} \right)}}{{x\left( {x + 4} \right)\left( {x + 3} \right)}}\\
= \frac{{{x^2} + 7x + 12 + 2{x^2} + 6x - 3{x^2} - 12x}}{{x\left( {x + 4} \right)\left( {x + 3} \right)}} \\= \frac{{x + 12}}{{x\left( {x + 4} \right)\left( {x + 3} \right)}}<0
\end{array}\)
Bảng xét dấu:
Ta có: \(\begin{array}{l}
x = 0\\
x + 12 = 0 \Leftrightarrow x = - 12\\
x + 4 = 0 \Leftrightarrow x = - 4\\
x + 3 = 0 \Leftrightarrow x = - 3
\end{array}\)
Tập nghiệm của bất phương trình là: \(T = \left ( -12;-4 \right ) ∪ (-3; 0)\).
d) \(\frac{x^{2}-3x+1}{x^{2}-1}<1\)
\( \Leftrightarrow f(x) = {{{x^2} - 3x + 1} \over {{x^2} - 1}} - 1 = {{{x^2} - 3x + 1 - {x^2} + 1} \over {{x^2} - 1}} \)\(= {{ - 3x + 2} \over {(x - 1)(x + 1)}} < 0\)
Bảng xét dấu:
Ta có:
\(\begin{array}{l}
- 3x + 2 = 0 \Leftrightarrow x = \frac{2}{3}\\
x + 1 = 0 \Leftrightarrow x = - 1\\
x - 1 = 0 \Leftrightarrow x = 1
\end{array}\)
Tập nghiệm của bất phương trình là: \(T = \left ( -1;\frac{2}{3} \right ) ∪ (1; +∞)\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK