Xác định parabol \(y = ax^2+ bx + 2\), biết rằng parabol đó:
a) Đi qua hai điểm \(M(1; 5)\) và \(N(- 2; 8)\);
b) Đi qua hai điểm \(A(3;- 4)\) và có trục đối xứng là \(x=-\frac{3}{2}.\)
c) Có đỉnh là \(I(2;- 2)\);
d) Đi qua điểm \(B(- 1; 6)\) và tung độ của đỉnh là \(-\frac{1}{4}.\)
Trục đối xứng của parabol là: \(x=-\frac{b}{2a}.\)
Đỉnh của parabol là: \(\left( { - \frac{b}{{2a}}; - \frac{\Delta }{{4a}}} \right)\)
Lời giải chi tiết
a) Vì parabol đi qua \(M(1; 5)\) nên tọa độ của \(M\) là nghiệm đúng phương trình của parabol:
\(5 = a.1^2+ b.1 + 2\).
Tương tự, với \(N(- 2; 8)\) ta có:
\(8 = a.(- 2)^2 + b.(- 2) + 2\)
Giải hệ phương trình: \(\left\{\begin{matrix} a+b+2=5\\ 4a-2b+2=8 \end{matrix}\right.\)
ta được \(a = 2, b = 1\).
Parabol có phương trình là: \(y = 2x^2 + x + 2\).
b) Vì parabol đi qua hai điểm \(A(3;- 4)\) nên tọa độ \(A\) là nghiệm đúng phương trình của parabol:
\(a(3)^{2}+b.3+2=-4\)
Parabol có trục đối xứng là \(x=-\frac{3}{2}\) nên ta có:
\(-\frac{b}{2a}=-\frac{3}{2}\)
Giải hệ phương trình: \(\left\{\begin{matrix} -\frac{b}{2a}=-\frac{3}{2}\\a(3)^{2}+b.3+2=-4 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=-\frac{1}{3}\\ b=-1 \end{matrix}\right.\)
Phương trình parabol cần tìm là: \(y = -\frac{1}{3} x^2- x + 2\).
c) Parabol có đỉnh \(I(2;- 2)\) do đó tọa độ \(I\) là nghiệm đúng phương trình của parabol:
\(a.2^2+b.2+2=-2\)
Parabol có đỉnh \(I(2;- 2)\) nên parabol có trục đối xứng là: \(x=2\) do đó:
\( -\frac{b}{2a}=2\)
Giải hệ phương trình: \(\left\{\begin{matrix} -\frac{b}{2a}=2\\a.2^2+b.2+2=-2 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=1\\ b=-4 \end{matrix}\right.\)
Phương trình parabol cần tìm là: \(y = x^2- 4x + 2\).
d) Vì parabol đi qua điểm \(B(- 1; 6)\) nên tọa độ \(B\) là nghiệm đúng phương trình của parabol:
\(a(-1)^{2}+b(-1)+2=6\)
Parabol có tung độ của đỉnh là \(-\frac{1}{4}\) nên ta có:
\({ - \frac{\Delta }{{4a}}}=-\frac{1}{4} \)
Khi đó ta có hệ phương trình sau:
\(\begin{array}{l}
\left\{ \begin{array}{l}
6 = a{\left( { - 1} \right)^2} + b.\left( { - 1} \right) + 2\\
- \frac{\Delta }{{4a}} = - \frac{1}{4}
\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}
a - b = 4\\
{b^2} - 4ac = a
\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}
a = 4 + b\\
{b^2} - 9a = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
a = 4 + b\\
{b^2} - 9\left( {4 + b} \right) = 0
\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}
a = 4 + b\\
{b^2} - 9b - 36 = 0
\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
a = 1\\
b = - 3
\end{array} \right.\\
\left\{ \begin{array}{l}
a = 16\\
b = 12
\end{array} \right.
\end{array} \right.
\end{array}\)
Phương trình parabol cần tìm là: \(y = 16x^2+ 12x + 2\) hoặc \(y = x^2- 3x + 2\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK