Cho đường tròn \((O)\), bán kính \(OM\). Vẽ đường tròn tâm \(O'\), đường kính \(OM\). Một bán kính \(OA\) của đường tròn \((O)\) cắt đường tròn \((O')\) ở \(B\).
Chứng minh cung \(MA\) và cung \(MB\) có độ dài bằng nhau.
+) Góc nội tiếp có số đo bằng nửa số đo cung bị chắn.
+) Góc ở tâm có số đo bằng số đo cung bị chắn.
+) Độ dài cung \(n^0\) của đường tròn bán kính \(R\) là: \(l=\frac{\pi Rn}{180}.\)
Lời giải chi tiết
Đặt \(\widehat {MOB} = \alpha \)
\(\Rightarrow \widehat {MO'B} = 2\alpha\) (góc nội tiếp và góc ở tâm của đường tròn \((O’)\) cùng chắn cung \(BM\)).
Ta có: \(\widehat{BO'M}\) là góc ở tâm chắn cung \(BM \Rightarrow sđ\overparen{MB}= 2\alpha. \)
\(\Rightarrow\) Độ dài cung \(MB\) là:
\({{l_\overparen{MB}}} = {{\pi .O'M.2\alpha } \over {{{180}^0}}} = {{\pi .O'M.\alpha } \over {{{90}^0}}}(1)\)
Ta có: \(\widehat{AOM}\) là góc ở tâm chắn cung \(AM \Rightarrow sđ\overparen{AM}= \alpha. \)
\(\Rightarrow\) Độ dài cung \(MA\) là:
\({{l_\overparen{MA}}} = {{\pi .OM.\alpha } \over {{{180}^0}}} = {{2\pi .O'M.\alpha } \over {{{180}^0}}} = {{\pi O'M.\alpha } \over {{{90}^0}}}(2)\)
(Vì \(OM = 2O’M\))
Từ (1) và (2) \(\Rightarrow {l_\overparen{MB}}={l_\overparen{MA}}\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK