Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Mỗi khẳng định sau đúng hay sai ? Vì sao ?

a) \(0,01 = \sqrt {0,0001} \);

b) \(- 0,5 = \sqrt { - 0,25} \);

c) \(\sqrt {39}  < 7\) và \(\sqrt {39}  > 6\);

d) \(\left( {4 - 13} \right).2{\rm{x}} < \sqrt 3 \left( {4 - \sqrt {13} } \right) \Leftrightarrow 2{\rm{x}} < \sqrt {3} \).

Hướng dẫn giải

+ \( \sqrt{A}\) xác định (hay có nghĩa) khi \(A \ge 0\).

+) Sử dụng định lí so sánh hai căn bậc hai:

              \(a < b \Leftrightarrow \sqrt{a} < \sqrt{b}\),   với \(a,\ b \ge 0\).

+ \(a.c >b.c \Leftrightarrow a> b\) , với \( c>0\).

Lời giải chi tiết

a) Đúng.

Vì  \(VP=\sqrt{0,0001}=\sqrt{0,01^2}=0,01=VT\). 

b) Sai

Vì số âm không có căn bậc hai.

c) Đúng. Vì:

\(\left\{ \matrix{
{6^2} = 36 \hfill \cr
{\left( {\sqrt {39} } \right)^2} = 39 \hfill \cr
{7^2} = 49 \hfill \cr} \right.\)

Mà   \(36 < 39 < 49\)  \(\Leftrightarrow \sqrt {36}  < \sqrt {39}  < \sqrt {49} \)

                                 \(\Leftrightarrow \sqrt {{6^2}}  < \sqrt {39}  < \sqrt {{7^2}} \)

                                 \(\Leftrightarrow 6 < \sqrt {39}  < 7\)

Hay \(\sqrt{39}>6\) và \( \sqrt{39} < 7\).

d) Đúng. 

Xét bất phương trình đề cho:

                  \((4-\sqrt{13}).2x<\sqrt 3 .(4-\sqrt{13})\)     \((1)\)

Ta có: 

\(\left\{ \matrix{
{4^2} = 16 \hfill \cr
{\left( {\sqrt {13} } \right)^2} = 13 \hfill \cr} \right.\)

Mà \(16>13 \Leftrightarrow \sqrt{16} > \sqrt{13}\)

                       \(\Leftrightarrow \sqrt{4^2}> \sqrt{13}\)

                       \(\Leftrightarrow 4> \sqrt{13}\)

                       \(\Leftrightarrow 4-\sqrt{13}>0\)

Chia cả hai vế của bất đẳng thức \((1)\) cho số dương \((4-\sqrt{13})\), ta được:

                         \(\dfrac{(4-\sqrt{13}).2x}{(4-\sqrt{13})} <\dfrac{\sqrt 3 .(4-\sqrt{13})}{(4-\sqrt{13})}\)

                        \(\Leftrightarrow 2x < \sqrt 3.\)

 Vậy phép biến đổi tương đương trong câu d là đúng.

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK