Cho hình 125, trong đó \(ABCD\) là hình chữ nhật, \(E\) là một điểm bất kì nằm trên đường chéo \(AC, FG // AD\), và \(HK // AB\).
Chứng minh rằng hai hình chữ nhật \(EFBK\) và \(EGDH\) có cùng diện tích.
Áp dụng tính chất: Hai tam giác bằng nhau thì có diện tích bằng nhau.
Lời giải chi tiết
Vì \(FG// AD\) (gt) nên suy ra \(EG//KC\)
Vì \(HK//DC\) (gt) nên suy ra \(EK//GC\)
\( \Rightarrow \) Tứ giác \(EKCG\) là hình bình hành (dấu hiệu nhận biết hình bình hành)
Mặt khác, \(\widehat {GCK} = {90^0}\) (gt) do đó \(EKCG\) là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)
Tương tự ta cũng chứng minh được \(AHEF\) là hình chữ nhật.
Xét \(\Delta ECG\) và \(\Delta CEK\) có:
+) \(EG=KC\) (vì \(EKCG\) là hình chữ nhật)
+) \(EC\) chung (gt)
+) \(EK=CG\) (vì \(EKCG\) là hình chữ nhật)
\(\Rightarrow \Delta ECG = \Delta CEK\) (c-c-c)
Do đó: \({S_{ECG}} = {S_{CEK}}\) (Hai tam giác bằng nhau thì có diện tích bằng nhau)
Tương tự:
\(ABCD\) là hình chữ nhật ta có:
\({S_{ ADC}} = {S_{CBA}}\)
\(AHEF\) là hình chữ nhật ta có:
\({S_{AHE}} = {S_{ EFA}}\)
\(\eqalign{
& {S_{ADC}} = {S_{AHE}} + {S_{EGDH}} + {S_{ECG}} \cr
& {S_{CBA}} = {S_{EFA}} + {S_{EFBK}} + {S_{CEK}} \cr} \)
\(\Rightarrow {S_{AHE}} + {S_{EGDH}} + {S_{ECG}} = {S_{EFA}} \)\(+ {S_{EFBK}} + {S_{CEK}}\)
\(\Rightarrow {S_{EGDH}} = {S_{EFBK}}\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm thứ ba ở cấp trung học cơ sở, học tập bắt đầu nặng dần, sang năm lại là năm cuối cấp áp lực lớn dần nhưng các em vẫn phải chú ý sức khỏe nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK