Thực hiện phép nhân, rút gọn rồi tính giá trị của biểu thức:
a) \(x(x - y) + y(x + y)\) tại \(x = -6\) và \(y = 8\);
b) \(x({x^{2}} - {\rm{ }}y) - {x^{2}}\left( {x{\rm{ }} + {\rm{ }}y} \right) + y{\rm{ }}({x^2}-{\rm{ }}x) \) tại \(x = \frac{1}{2}\) và \(y = -100\).
Áp dụng: Quy tắc nhân đơn thức với đa thức: Muốn nhân một đơn thức với một đa thức ta nhân đơn thức với từng số hạng của đa thức rồi cộng các tích với nhau.
- Sau khi rút gọn ta thay các giá trị tương ứng của x và y để tìm giá trị của biểu thức đó.
Lời giải chi tiết
a)
\(\eqalign{
& x\left( {x - y} \right) + y\left( {x + y} \right) \cr
& = x.x + x.( - y) + y.x + y.y \cr
& = {x^2}-xy + yx + {y^2} \cr
& = {x^2} + {y^2} \cr} \)
Với \(x = -6, y = 8\) biểu thức có giá trị là \({\left( { - 6} \right)^2} + {8^2} = 36 + 64 = 100\)
b)
\(\eqalign{
& x({x^{2}} - {\rm{ }}y) - {x^{2}}\left( {x{\rm{ }} + {\rm{ }}y} \right) + y{\rm{ }}({x^2}-{\rm{ }}x) \cr
& = x.{x^2} + x.( - y) + ( - {x^2}).x + ( - {x^2}).y + y.{x^2} + y.( - x) \cr
& = {\rm{ }}{x^3}-{\rm{ }}xy{\rm{ }}-{\rm{ }}{x^3}-{\rm{ }}{x^2}y{\rm{ }} + {\rm{ }}y{x^2} - {\rm{ }}yx \cr
& = \left( {{x^3} - {x^3}} \right) + \left( { - xy - yx} \right) + \left( { - {x^2}y + y{x^2}} \right) \cr
& = - 2xy \cr} \)
Với \(x = \frac{1}{2}, y = -100\) biểu thức có giá trị là \(-2 . \frac{1}{2} . (-100) = 100\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm thứ ba ở cấp trung học cơ sở, học tập bắt đầu nặng dần, sang năm lại là năm cuối cấp áp lực lớn dần nhưng các em vẫn phải chú ý sức khỏe nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK