Toán lớp 8 Tập 2 trang 83 - Cánh diều

Toán 8 Bài 8: Trường hợp đồng dạng thứ ba của tam giác

Giải Toán 8 Cánh diều tập 2 trang 83, 84, 85

Giải Toán 8 Bài 8: Trường hợp đồng dạng thứ ba của tam giác là tài liệu vô cùng hữu ích giúp các em học sinh lớp 8 có thêm nhiều gợi ý tham khảo để giải các bài tập trong SGK Toán 8 Cánh diều tập 2 trang 83, 84, 85.

Giải bài tập Toán 8 Cánh diều tập 2 trang 83 → 85 được trình bày rõ ràng, cẩn thận, dễ hiểu nhằm giúp học sinh nhanh chóng biết cách làm bài. Đồng thời, cũng là tài liệu hữu ích giúp giáo viên thuận tiện trong việc hướng dẫn học sinh ôn tập Bài 8 Chương VIII: Tam giác đồng dạng, hình đồng dạng. Vậy mời thầy cô và các em theo dõi bài viết dưới đây của Download.vn:

Toán 8 Bài 8: Trường hợp đồng dạng thứ ba của tam giác Cánh diều

Giải Toán 8 Cánh diều Tập 2 trang 85

Bài 1

Cho Hình 86.

a) Chứng minh \triangleMNP \sim \triangleABC.

b) Tìm x.

Bài 1

Lời giải:

a) Ta có: \widehat{M}=\widehat{A}=60^{\circ}; \widehat{N}=\widehat{B}=45^{\circ}

Suy ra: \triangleMNP \sim \triangleABC (g.g)

b) \triangleMNP \sim \triangleABC nên \frac{MP}{AC}=\frac{NP}{BC} hay \frac{x}{4\sqrt{2}}=\frac{3\sqrt{3}}{4\sqrt{3}}

Do đó: x = 3\sqrt{2}.

Bài 2

Cho hai tam giác ABC và PMN thỏa mãn \widehat{A}=70^{\circ}, \widehat{B}=80^{\circ}, \widehat{M}=80^{\circ}, \widehat{N}=30^{\circ}. Chứng minh \frac{AB}{PM}=\frac{BC}{MN}=\frac{CA}{NP}.

Lời giải:

Tam giác MNP có: \widehat{M}+\widehat{N}+\widehat{P}=180^{\circ}

\widehat{M}=80^{\circ}, \widehat{N}=30^{\circ}

Suy ra: \widehat{P}=70^{\circ}.

Ta có: \widehat{A}=\widehat{P}=70^{\circ}; \widehat{B}=\widehat{M}=80^{\circ}

Suy ra: \triangleABC \sim \trianglePMN (g.g)

Do đó: \frac{AB}{PM}=\frac{BC}{MN}=\frac{CA}{NP}.

Bài 3

Cho tam giác nhọn ABC, hai đường cao AD và BE cắt nhau tại H. Chứng minh:

a) \triangleACD \sim \triangleBCE và CA . CE = CB . CD;

b) \triangleACD \sim \triangleAHE và AC . AE = AD . AH.

Lời giải:

a) Ta có: \widehat{ADC}=\widehat{BEC}=90^{\circ}; chung góc C

Suy ra: \triangleACD \sim \triangleBCE (g.g)

Do đó: \frac{CA}{CB}=\frac{CD}{CE} hay CA . CE = CB . CD.

b) Ta có: \widehat{ADC}=\widehat{AEH}=90^{\circ}; chung góc A

Suy ra: \triangleACD \sim \triangleAHE (g.g)

Do đó: \frac{AC}{AH}=\frac{AD}{AE} hay AC . AE = AD . AH.

Bài 4

Cho Hình 87 với \widehat{OAD}=\widehat{OCB}. Chứng minh:

a) \triangleOAD \sim \triangleOCB;

b) \frac{OA}{OD}=\frac{OC}{OB};

c) \triangleOAC \sim \triangleODB.

Bài 4

Lời giải:

a) Ta có: \widehat{OAD}=\widehat{OCB}; chung góc O

Suy ra: \triangleOAD \sim \triangleOCB (g.g)

b) Do \triangleOAD \sim \triangleOCB nên \frac{OA}{OC}=\frac{OD}{OB}

Hay \frac{OA}{OD}=\frac{OC}{OB}.

c) Ta có: \frac{OA}{OD}=\frac{OC}{OB} (cmt) và chung góc O

Suy ra: \triangleOAC \sim \triangleODB (c.g.c)

Bài 5

Cho tam giác ABC vuông tại A, đường cao AH (Hình 88). Chứng minh:

a) \triangleABC \sim \triangleHBA và AB^{2} = BC . BH;

b) \triangleABC \sim \triangleHAC và AC^{2} = BC . CH;

c) \triangleABH \sim \triangleCAH và AH^{2} = BH . CH;

d) \frac{1}{AH^{2}}=\frac{1}{AB^{2}}+\frac{1}{AC^{2}}.

Bài 5

Lời giải:

a) Ta có: \widehat{BAC}=\widehat{BHA}=90^{\circ}; chung góc B

Suy ra: \triangleABC \sim \triangleHBA (g.g)

Do đó: \frac{AB}{HB}=\frac{BC}{BA}

Hay AB^{2} = BC . BH.

b) Ta có: \widehat{BAC}=\widehat{AHC}=90^{\circ}; chung góc C

Suy ra: \triangleABC \sim \triangleHAC (g.g)

Do đó: \frac{AC}{HC}=\frac{BC}{AC}

Hay AC^{2} = BC . CH.

c) Ta có: \triangleABC \sim \triangleHBA

\triangleABC \sim \triangleHAC

Suy ra: \triangleABH \sim \triangleCAH

Do đó: \frac{AH}{CH}=\frac{BH}{AH}

Hay AH^{2} = BH . CH.

d) Ta có: AB^{2} = BC . BH. Suy ra: \frac{1}{AB^{2}}=\frac{1}{BC.BH}

AC^{2} = BC . CH. Suy ra: \frac{1}{AC^{2}}=\frac{1}{BC.CH}

AH^{2} = BH . CH. Suy ra: \frac{1}{AH^{2}}=\frac{1}{BH.CH} (1)

Ta có: \frac{1}{AB^{2}}+\frac{1}{AC^{2}}=\frac{1}{BC.BH}+\frac{1}{BC.CH}=\frac{CH+BH}{BC.BH.CH}=\frac{BC}{BC.BH.CH}=\frac{1}{BH.CH} (2)

Từ (1)(2) suy ra: \frac{1}{AH^{2}}=\frac{1}{AB^{2}}+\frac{1}{AC^{2}}.

Bài 6

Trong Hình 89, bạn Minh dùng một dụng cụ để đo chiều cao của cây. Cho biết khoảng cách từ mắt bạn Minh đến cây và đến mặt đất lần lượt là AH = 2,8 m và AK = 1,6 m. Em hãy tính chiều cao của cây.

Bài 6

Lời giải:

Chiều cao của cây là đoạn thẳng BC.

Ta có: AHBK là hình chữ nhật nên AK = BH = 1,6 m

Tam giác AHB vuông tại H: AB = \sqrt{AH^{2}+BH^{2}}=\sqrt{2,8^{2}+1,6^{2}}=\frac{2\sqrt{65}}{5}

Ta có: \widehat{AHB}=\widehat{CAB}=90^{\circ}; chung góc B

Suy ra: \triangleHBA \sim \triangleABC

Do đó: \frac{HB}{AB}=\frac{BA}{BC}

Suy ra: BC = \frac{AB^{2}}{HB} = 6,5 m.

Liên kết tải về

pdf Toán 8 Bài 8: Trường hợp đồng dạng thứ ba của tam giác

Chủ đề liên quan

Học tập

Lớp 8

Toán 8 Cánh Diều

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK