Trang chủ Học tập Lớp 11 Toán 11 Chân trời sáng tạo

Toán lớp 11 tập 1 trang 79 - Chân trời sáng tạo

Toán 11 Bài 2: Giới hạn của hàm số

Giải Toán 11 Chân trời sáng tạo trang 71, 72, 73, 74, 75, 76, 77, 78, 79

Toán lớp 11 tập 1 trang 71, 72, 73, 74, 75, 76, 77, 78, 79 Chân trời sáng tạo là tài liệu vô cùng hữu ích mà Download.vn muốn giới thiệu đến quý thầy cô cùng các bạn học sinh lớp 11 tham khảo.

Giải Toán 11 Chân trời sáng tạo Bài 2 Giới hạn của hàm số được biên soạn đầy đủ, chi tiết trả lời các câu hỏi phần bài tập cuối bài trang 79. Qua đó giúp các bạn học sinh có thể so sánh với kết quả mình đã làm. Vậy sau đây là nội dung chi tiết Toán 11 tập 1 Bài 2 Giới hạn của hàm số Chân trời sáng tạo, mời các bạn cùng theo dõi tại đây.

I. Toán lớp 11 tập 1 trang 79 - Chân trời sáng tạo

Bài 1 trang 79

Tìm các giới hạn sau:

a) \lim_{x\rightarrow -2}(x^{2}-7x+4)

b) \lim_{x\rightarrow 3}\frac{x-3}{x^{2}-9}

c) \lim_{x\rightarrow 1}\frac{3-\sqrt{x+8}}{x-1}

Gợi ý đáp án

a) \lim_{x\rightarrow -2}(x^{2}-7x+4)

= \lim_{x\rightarrow -2}x^{2}-7.\lim_{x\rightarrow -2}x+\lim_{x\rightarrow -2}4

= (-2)^{2} - 7.(-2)+4

= 22

b) \lim_{x\rightarrow 3}\frac{x-3}{x^{2}-9}

=\lim_{x\rightarrow 3}\frac{x-3}{(x-3)(x+3)}

=\lim_{x\rightarrow 3}\frac{1}{x+3}

= \frac{1}{3+3}

=\frac{1}{6}

c) \lim_{x\rightarrow 1}\frac{3-\sqrt{x+8}}{x-1}

=\lim_{x\rightarrow 1}\frac{(3-\sqrt{x+8})(3+\sqrt{x+8})}{(x-1)(3+\sqrt{x+8})}

=\lim_{x\rightarrow 1}\frac{9 - x -8}{(x-1)(3+\sqrt{x+8})}

=\lim_{x\rightarrow 1}\frac{1-x}{(x-1)(3+\sqrt{x+8})}

=\lim_{x\rightarrow 1}\frac{-1}{3+\sqrt{x+8}}

= \frac{-1}{3+\sqrt{1+8}}

=\frac{-1}{6}

Bài 2 trang 79

Cho hàm số f(x)=\left\{\begin{matrix}-x^{2}; x<1\\x; x\geq 1\end{matrix}\right.

Tìm các giới hạn \lim_{x\rightarrow 1^{+}}f(x) ; \lim_{x\rightarrow 1^{-}}f(x) ; \lim_{x\rightarrow 1}f(x) (nếu có)

Gợi ý đáp án

\lim_{x\rightarrow 1^{+}}f(x) = \lim_{x\rightarrow 1^{+}}x = 1

\lim_{x\rightarrow 1^{-}}f(x) = \lim_{x\rightarrow 1^{-}}(-x^{2}) = -1

Do \lim_{x\rightarrow 1^{+}}f(x) \neq \lim_{x\rightarrow 1^{-}}f(x) nên không tồn tạ\lim_{x\rightarrow 1}f(x)

Bài 3 trang 79

Tìm các giới hạn sau:

a) \lim_{x\rightarrow +\infty }\frac{4x+3}{2x}

b) \lim_{x\rightarrow -\infty }\frac{2}{3x+1}

c) \lim_{x\rightarrow +\infty }\frac{\sqrt{x^{2}+1}}{x+1}

Gợi ý đáp án

a) \lim_{x\rightarrow +\infty }\frac{4x+3}{2x}=\lim_{x\rightarrow +\infty }\frac{4+\frac{3}{x}}{2} = \frac{4+0}{2}=2

b) \lim_{x\rightarrow -\infty }\frac{2}{3x+1}=\lim_{x\rightarrow -\infty }\frac{\frac{2}{x}}{3+\frac{1}{x}} = \frac{0}{3+0}=0

c) \lim_{x\rightarrow +\infty }\frac{\sqrt{x^{2}+1}}{x+1}=\lim_{x\rightarrow +\infty }\frac{\sqrt{1+\frac{1}{x^{2}}}}{1+\frac{1}{x}} = \frac{\sqrt{1+0}}{1+0}=1

Bài 4 trang 79

a) \lim_{x\rightarrow -1^{+}}\frac{1}{x+1}

b) \lim_{x\rightarrow -\infty }(1-x^{2})

c) \lim_{x\rightarrow 3^{-}}\frac{x}{3-x}

Gợi ý đáp án

a) \lim_{x\rightarrow -1^{+}}\frac{1}{x+1} = +\infty

b) \lim_{x\rightarrow -\infty }(1-x^{2}) = \lim_{x\rightarrow -\infty }\left [x^{2}.\left ( \frac{1}{x^{2}}-1 \right )  \right ] = \lim_{x\rightarrow -\infty }x^{2}.\lim_{x\rightarrow -\infty } \left ( \frac{1}{x^{2}}-1 \right )

= (+\infty) .(0-1)=-\infty

c) \lim_{x\rightarrow 3^{-}}\frac{x}{3-x} = \lim_{x\rightarrow 3^{-}}x.\lim_{x\rightarrow 3^{-}}\frac{1}{3-x}=+\infty

Bài 5 trang 79

Trong hồ có chứa 6000 lít nước ngọt. Người ta bơm nước biển có nồng độ muối là 30 gam/lít vào hồ với tốc độ 15 lít/phút.

a) Chứng tỏ rằng nồng độ muối trong hồ sau t phút kể từ khi bắt đầu bơm là C(t)= \frac{30t}{400+t} (gam/lít)

b) Nồng độ muối trong hồ như thế nào nếu t\rightarrow +\infty

Gợi ý đáp án

a) Sau thời gian t, số lít nước bơm vào hồ là: 15t (lít)

Trong 15t lít nước biển có lượng muối: 30.15t = 450t (gam)

Nồng độ muối trong hồ sau thời gian t phút: C(t)= \frac{450t}{6000+15t}=\frac{30t}{400+t}

b) \lim_{x\rightarrow +\infty }C(t)= \lim_{x\rightarrow +\infty }\frac{30t} {400+t} = \lim_{x\rightarrow +\infty }\frac{30}{\frac{400}{t}+1} = \frac{30}{0+1}=30

Bài 6 trang 79

Một thấu kính hội tụ có tiêu cự là f > 0 không đổi. Gọi d và d' lần lượt là khoảng cách từ vật thật và ảnh của nó tới quang tâm O của thấu kính (Hình 5). Ta có công thức \frac{1}{d}+\frac{1}{d'}=\frac{1}{f} hay d'=\frac{df}{d-f}

Xét hàm số g(d) = \frac{df}{d-f}. Tìm các giới hạn sau đây là giải thích ý nghĩa

a) \lim_{d\to f^{+}}g(d)

b) \lim_{d\to +\infty }g(d)

Gợi ý đáp án

a) Ta có: \lim_{d\to f^{+}}df = f^{2} > 0

\lim_{d\to f^{+}}\frac{1}{d-f} = +\infty

Suy ra: \lim_{d\to f^{+}}g(d)= \lim_{d\to f^{+}}\frac{df}{d-f} =\lim_{d\to f^{+}}\left [df.\frac{1}{d-f}  \right ]= +\infty

Vậy khi vật tiến gần tới tiêu điểm thì ảnh càng lớn và tiến tới +\infty

b) \lim_{d\to +\infty }g(d) = \lim_{d\to +\infty }\frac{df}{d-f}=\lim_{d\to +\infty }\frac{f}{1-\frac{f}{d}}=\frac{f}{1-0}=f

Vậy khi vật ở rất xa, tiến tới +\infty thì ảnh của vật nằm trên tiêu điểm

II. Luyện tập giới hạn của hàm số

Bài trắc nghiệm số: 4290

Liên kết tải về

pdf Toán 11 Bài 2: Giới hạn của hàm số

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK