Phương trình bậc nhất một ẩn: Cách giải và bài tập

Các dạng bài tập về phương trình bậc nhất một ẩn

Cách giải phương trình bậc nhất một ẩn

Các dạng bài tập về phương trình bậc nhất một ẩn là tài liệu hữu ích gồm 16 trang, được biên soạn đầy đủ lý thuyết và các dạng bài tập về phương trình bậc nhất một ẩn có đáp án, lời giải chi tiết kèm theo bài tập về nhà.

Bài tập phương trình bậc nhất 1 ẩn giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8. Qua đó các em học sinh biết cách thực hành các dạng bài tập liên quan tới phương trình bậc nhất 1 ẩn. Đồng thời đây cũng là tư liệu giúp giáo viên tham khảo để dạy cho các em học sinh của mình. Ngoài ra các em tham khảo thêm: bài tập về các trường hợp đồng dạng của tam giác, bài tập về hằng đẳng thức. Vậy sau đây là toàn bộ kiến thức về Các dạng bài tập về phương trình bậc nhất một ẩn, mời các bạn cùng tải tại đây nhé.

Lý thuyết cần nhớ về phương trình bậc nhất một ẩn

1. Định nghĩa về phương trình bậc nhất một ẩn

+ Phương trình có dạng ax + b = 0, với a và b là hai số đã cho và a khác 0 được gọi là phương trình bậc nhất một ẩn.

+ Phương trình bậc nhất một ẩn có 1 nghiệm duy nhất

2. Quy tắc biến đổi phương trình

+ Quy tắc chuyển vế: trong một phương trình ta có thể chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó.

+ Quy tắc nhân với một số: trong một phương trình, ta có thể nhân (hoặc chia) cả hai vế với cùng một số khác 0.

3. Cách giải phương trình bậc nhất một ẩn

+ Bước 1: chuyển vế ax = -b

+ Bước 2: chia cả hai vế cho a

+ Bước 3: Kết luận nghiệm

Vấn đề I: Chứng minh một số là nghiệm của một phương trình

Phương pháp: Dùng mệnh đề sau:

- x_{0} là nghiệm của phương trình A(x)=B(x) \Leftrightarrow A\left(x_{0}\right)=B\left(x_{0}\right)

- x_{0} không là nghiệm của phương trình A(x)=B(x) \Leftrightarrow A\left(x_{0}\right) \neq B\left(x_{0}\right)

Bài 1. Xét xem x_{0} có là nghiệm của phương trình hay không?

a) 3(2-x)+1=4-2 x ; x_{0}=-2

b) 5 x-2=3 x+1 ; \quad x_{0}=\frac{3}{2}

c) 3 x-5=5 x-1;

d) 2(x+4)=3-x ; \quad x_{0}=-2

e) 7-3 x=x-5;

f) 2(x-1)+3 x=8 ; \quad x_{0}=2

g) 5 x-(x-1)=7;

h) 3 x-2=2 x+1 ; \quad x_{0}=3

Bài 2. Xét xem x_{0} có là nghiệm của phương trình hay không?

a) x^{2}-3 x+7=1+2 x ; \quad x_{0}=2

b) x^{2}-3 x-10=0 ; \quad x_{0}=-2

c) x^{2}-3 x+4=2(x-1) ; x_{0}=2

d) (x+1)(x-2)(x-5)=0 ; \quad x_{0}=-1

e) 2 x^{2}+3 x+1=0 ; \quad x_{0}=-1

f) 4 x^{2}-3 x=2 x-1 ; \quad x_{0}=5

Bài 3. Tìm giá trị k sao cho phương trình có nghiệm x_{0}được chỉ ra:

a) 2 x+k=x-1 ; \quad x_{0}=-2

b) (2 x+1)(9 x+2 k)-5(x+2)=40 ; x_{0}=2

c) 2(2 x+1)+18=3(x+2)(2 x+k) ; x_{0}=1

d) 5(k+3 x)(x+1)-4(1+2 x)=80 ; \quad x_{0}=2

Vấn đề II. Số nghiệm của một phương trình

Phương pháp: Dùng mệnh đề sau:

- Phuơng trình A(x)=B(x) vô nghiệm \Leftrightarrow A(x) \neq B(x), \forall x

- Phuơng trình A(x)=B(x) có vô số nghiệm \Leftrightarrow A(x)=B(x), \forall x

Bài 1. Chứng tỏ các phương trình sau vô nghiệm:

a) 2x+5=4(x-1)-2(x-3)

b) 2 x-3=2(x-3)

c) t-2 \mid=-1

d) x^{2}-4 x+6=0

Bài 2. Chứng tỏ rằng các phương trình sau có vô số nghiệm:

a) 4(x-2)-3 x=x-8

b) 4(x-3)+16=4(1+4 x)

c) 2(x-1)=2 x-2

d) k \neq x

e) (x+2)^{2}=x^{2}+4 x+4

f) (3-x)^{2}=x^{2}-6 x=9

Bài 3. Chứng tỏ rằng các phương trình sau có nhiều hơn một nghiệm:

a) x^{2}-4=0

b) (x-1)(x-2)=0

c) (x-1)(2-x)(x+3)=0

d) x^{2}-3 x=0

Vấn đề III. Chứng minh hai phương trình tương đương

Để chứng minh hai phương trình tương đương, ta có thể sử dụng một trong các cách sau:

- Chúng minh hai phương trình có cùng tậ nghiệm.

- Sử dụng các phép biến đổi tương đương để biến đổi phương trình này thành phương trình kia.

- Hai quy tắc biến đổi phương trình:

- Quy tắc chuyển vế: Trong một phương trình, ta có thể chuyển một hạng tử tù vế này sang vế kia và đổi dấu hàng từ đó.

- Qui tắc nhân: Trong một phương trình, ta có thể nhân cả hai vế với cùng một số khác 0 .

Bài 1. Xét xem các phương trình sau có tương đương hay không?

a) 3 x=3 và x-1=0

b) x+3=0 và 3 x+9=0

c) x-2=0 và (x-2)(x+3)=0

d) 2 x-6=0 và x(x-3)=

Bài 2. Xét xem các phương trình sau có tương đương hay không?

a) x^{2}+2=0 và x\left(x^{2}+2\right)=0

b) x+1=x và x^{2}+1=0

c) x+2=0 và \frac{x}{x+2}=0

d) x^{2}+\frac{1}{x}=x+\frac{1}{x} và x^{2}+x=0

e) k-1=2 và (x+1)(x-3)=0

f) x+5=0 và (x+5)\left(x^{2}+1\right)=0

.................

Mời các bạn tải File tài liệu để xem thêm nội dung tài liệu

Liên kết tải về

pdf Các dạng bài tập về phương trình bậc nhất một ẩn

Chủ đề liên quan

Học tập

Lớp 8

Toán 8

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK