Trang chủ Học tập Lớp 7 Toán 7 Kết nối tri thức

Giải Toán 7 trang 58 Kết nối tri thức với cuộc sống - Tập 1

Toán 7 Luyện tập chung trang 58

Giải Toán lớp 7 trang 58 sách Kết nối tri thức với cuộc sống - Tập 1

Giải Toán lớp 7 Luyện tập chung trang 58 bao gồm đáp án chi tiết cho từng phần, từng bài tập trong SGK Toán 7 Tập 1 Kết nối tri thức với cuộc sống.

Lời giải Toán 7 Luyện tập trung trang 58 trình bày khoa học, biên soạn dễ hiểu, giúp các em nâng cao kỹ năng giải Toán 7, từ đó học tốt môn Toán lớp 7 hơn. Đồng thời, cũng giúp thầy cô nhanh chóng soạn giáo án Luyện tập chung Chương III: Góc và đường thẳng song song. Vậy mời thầy cô và các em cùng theo dõi bài viết dưới đây của Download.vn:

Giải Toán 7 bài Luyện tập chung trang 58 Kết nối tri thức với cuộc sống

Giải Toán 7 Kết nối tri thức với cuộc sống trang 58 tập 1

Bài 3.27

Cho hình thang ABCD có cạnh AD vuông góc với hai đáy AB và CD. Số đo góc ở đỉnh B gấp đôi số đo góc ở đỉnh C. Tính số đo các góc của hình thang đó.

Hướng dẫn giải

- Định lí là một khẳng định được suy ra từ những khẳng định đúng đã biết. Mỗi định lí thường được phát biểu dưới dạng:

Nếu …. Thì ….

+ Phần giữa từ “nếu” và từ “thì” là giả thiết của định lí.

+ Phần sau từ “thì” là kết luận của định lí.

- Chứng minh một định lí là dùng lập luận để từ giả thiết và những khẳng định đúng đã biết suy ra kết luận của định lí.

Gợi ý đáp án:

Vì ABCD có 2 đáy AB,CD nên AB // CD. Do đó, \widehat B + \widehat C = 180^\circ (2 góc trong cùng phía)

Mặt khác:

\begin{array}{l}\widehat B = 2.\widehat C\\ \Rightarrow 2.\widehat C + \widehat C = 180^\circ \\ \Rightarrow 3.\widehat C = 180^\circ \\ \Rightarrow \widehat C = 180^\circ :3 = 60^\circ \end{array}

Bài 3.28

Vẽ hình minh họa và viết giả thiết, kết luận của định lí: “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau”.

Hướng dẫn giải

- Định lí là một khẳng định được suy ra từ những khẳng định đúng đã biết. Mỗi định lí thường được phát biểu dưới dạng:

Nếu …. Thì ….

+ Phần giữa từ “nếu” và từ “thì” là giả thiết của định lí.

+ Phần sau từ “thì” là kết luận của định lí.

- Chứng minh một định lí là dùng lập luận để từ giả thiết và những khẳng định đúng đã biết suy ra kết luận của định lí.

Gợi ý đáp án:

Bài 3.28

Bài 3.29

Kẻ các tia phân giác Ax, By của một cặp góc so le trong tạo bởi đường thẳng b vuông góc với hai đường thẳng song song c, d (H 3.48). Chứng minh rằng hai tia phân giác đó nằm cùng trên hai đường thẳng song song.

Bài 3.29

Hướng dẫn giải

- Định lí là một khẳng định được suy ra từ những khẳng định đúng đã biết. Mỗi định lí thường được phát biểu dưới dạng:

Nếu …. Thì ….

+ Phần giữa từ “nếu” và từ “thì” là giả thiết của định lí.

+ Phần sau từ “thì” là kết luận của định lí.

- Chứng minh một định lí là dùng lập luận để từ giả thiết và những khẳng định đúng đã biết suy ra kết luận của định lí.

Gợi ý đáp án:

Bài 3.29

Vì Ax là tia phân giác của góc A vuông nên \widehat {{A_1}} = \widehat {{A_2}} = \frac{1}{2}.90^\circ  = 45^\circ

Vì By là tia phân giác của góc B vuông nên \widehat {{B_1}} = \widehat {{B_2}} = \frac{1}{2}.90^\circ  = 45^\circ

\widehat {{A_2}} = \widehat {{B_2}}( = 45^\circ ), mà hai góc này ở vị trí so le trong nên Ax // By (Dấu hiệu nhận biết hai đường thẳng song song)

Bài 3.30

Cho hai đường thẳng phân biệt a, b cùng vuông góc với đường thẳng c; d là một đường thẳng khác khác c và d vuông góc với a. Chứng minh rằng:

a) a // b

b) c // d

c) b ⊥ d

Hướng dẫn giải

- Định lí là một khẳng định được suy ra từ những khẳng định đúng đã biết. Mỗi định lí thường được phát biểu dưới dạng:

Nếu …. Thì ….

+ Phần giữa từ “nếu” và từ “thì” là giả thiết của định lí.

+ Phần sau từ “thì” là kết luận của định lí.

- Chứng minh một định lí là dùng lập luận để từ giả thiết và những khẳng định đúng đã biết suy ra kết luận của định lí.

Gợi ý đáp án:

Bài 3.30

a) Vì c \bot a;c \bot b \Rightarrow a//b (hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)

b) Vì a \bot c;a \bot d \Rightarrow c//d (hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)

c) Vì b \bot c;c//d \Rightarrow b \bot c (đường thẳng vuông góc với 1 trong 2 đường thẳng song song thì cũng vuông góc với đường thẳng kia)

Bài 3.31

Cho hình 3.49. Chứng minh rằng:

Hình 3.49

a) d // BC

b) d ⊥ AH

c) Trong các kết luận trên, kết luận nào được suy ra từ tính chất của hai đường thẳng song song, kết luận nào được suy ra từ dấu hiệu nhận biết hai đường thẳng song song?

Hướng dẫn giải

- Định lí là một khẳng định được suy ra từ những khẳng định đúng đã biết. Mỗi định lí thường được phát biểu dưới dạng:

Nếu …. Thì ….

+ Phần giữa từ “nếu” và từ “thì” là giả thiết của định lí.

+ Phần sau từ “thì” là kết luận của định lí.

- Chứng minh một định lí là dùng lập luận để từ giả thiết và những khẳng định đúng đã biết suy ra kết luận của định lí.

Gợi ý đáp án:

Giải thiết

AH vuông góc với BC,

Kết luận

a) d // BC

b) d ⊥ AH

c) Trong các kết luận trên, kết luận nào được suy ra từ tính chất của hai đường thẳng song song, kết luận nào được suy ra từ dấu hiệu nhận biết hai đường thẳng song song?

Chứng minh

a) Theo bài ra ta có:

\widehat {dAC} = \widehat {ACB} = {50^0}

Mà hai góc \widehat {dAC};\widehat {ACB} nằm ở vị trí hai góc so le trong

=> Đường thẳng d song song với BC

=> d // BC.

b) Theo chứng minh câu a ta có:

d // BC

Mặt khác BC ⊥ AH

=> d ⊥ AH

Vậy d ⊥ AH

c) Xét hai kết luận ở trên ta thấy:

Kết luận a) d // BC được suy ra từ dấu hiệu nhận biết hai đường thẳng song song.

Kết luận b) d ⊥ AH được suy ra từ tính chất của hai đường thẳng song song.

Liên kết tải về

pdf Toán 7 Luyện tập chung trang 58

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK