Giải Toán 10 trang 19 Kết nối tri thức với cuộc sống - Tập 1

Toán 10 Bài 2: Tập hợp và các phép toán trên tập hợp

Giải SGK Toán 10 trang 19 - Tập 1 sách Kết nối tri thức với cuộc sống

Giải bài tập Toán 10 Kết nối tri thức Bài 2 giúp các bạn học sinh có thêm nhiều gợi ý tham khảo để trả lời các câu hỏi Luyện tập và bài tập trong SGK bài Tập hợp và các phép toán trên tập hợp.

Giải Toán 10 Kết nối tri thức trang 19 tập 1 được biên soạn với các lời giải chi tiết, đầy đủ và chính xác bám sát chương trình sách giáo khoa. Giải Toán 10 Toán 10 bài 2 Kết nối tri thức là tài liệu cực kì hữu ích hỗ trợ các em học sinh lớp 10 trong quá trình giải bài tập. Đồng thời phụ huynh có thể sử dụng để hướng dẫn con em học tập và đổi mới phương pháp giải phù hợp hơn.

Giải Toán 10 Bài 2: Tập hợp và các phép toán trên tập hợp

I. Giải bài 2 Toán 10 Kết nối tri thức phần Luyện tập

II. Giải Toán 10 Kết nối tri thức trang 19

I. Giải bài 2 Toán 10 Kết nối tri thức phần Luyện tập

Luyện tập 1

Gọi X là tập nghiệm của phương trình:

x2 – 24x + 143 = 0

Các mệnh đề sau đúng hay sai?

a) 13 ∈ X

b) 11 ∉ X

c) n(X) = 2

Lời giải chi tiết

Giải phương trình:

x2 – 24x + 143 = 0

=> x = 13 hoặc x = 11

Vậy X = {13; 11}

=> 13 ∈ X là đúng

=> 11 ∉ X là sai

=> n(X) = 2 là đúng

Luyện tập 2

Giả sử C là tập hợp các hình bình hành có hai đường chéo vuông góc. D là tập hợp các hình vuông

Các mệnh đề sau đúng hay sai?

a) C ⊂ D

b) C ⊃ D

c) C = D

Lời giải chi tiết

Hình bình hành có hai đường chéo vuông góc là hình thoi.

Hình vuông cũng là hình thoi nhưng hình thoi chưa chắc đã hình vuông.

Suy ra D ⊂ C.

=> Mệnh đề a) và c) sai, mệnh đề b) đúng.

Luyện tập 3

Cho hai tập hợp C = {-4; 0; 1; 2}. Các mệnh đề sau đúng hay sai?

a) C là tập con của \mathbb{Z}

b) C là tập con của \mathbb{N}

c) C là tập con của \mathbb{R}

Lời giải chi tiết

a) C là tập con của \mathbb{Z}

Khẳng định đúng vì các phần tử của C đều thuộc \mathbb{Z}.

b) C là tập con của \mathbb{N}

Ta có: - 4 \notin \mathbb{N}

=> Khẳng đính sai.

c) C là tập con của \mathbb{R}

Khẳng định đúng vì các phần tử của C đều thuộc \mathbb{R}.

II. Giải Toán 10 Kết nối tri thức trang 19

Bài 1.8 trang 19

Gọi X là tập hợp các quốc gia tiếp giáp với Việt Nam. Hãy liệt kê các phần tử của tập hợp X và biểu diễn tập X bằng biểu đồ Ven.

Gợi ý đáp án

X = {Lào; Campuchia; Trung quốc; Thái Lan}

Biểu đồ Ven:

Bài 1.9 trang 19

Kí hiệu E là tập hợp các quốc gia tại khu vực Đông Nam Á.

a) Nếu ít nhất hai phần tử thuộc tập hợp E.

b) Nêu ít nhất hai phần tử không thuộc tập hợp E.

c) Liệt kê các phần tử thuộc tập hợp E. Tập hợp E có bao nhiêu phần tử?

Gợi ý đáp án

a) Việt Nam \in E; Thái Lan \in E; Lào \in E.

b) Nhật Bản \notin E; Hàn Quốc \notin E.

c) E = {Việt Nam; Lào; Campuchia; Thái Lan; Myanmar; Malaysia; Singapore; Indonesia; Brunei; Philippines; Đông Timor}

Có 11 nước thuộc khu vực Đông Nam Á. Hay tập hợp E có 11 phần tử (n;(E) = 11).

Bài 1.10 trang 19

Hãy viết tập hợp sau bằng cách nêu tính chất đặc trưng cho các phần tử của tập hợp: A = {0; 4; 8; 12; 16}

Gợi ý đáp án

0; 4; 8; 12; 16 là các bội của 4 và nhỏ hơn 17.

A = {n \in \mathbb{N}|\;n \in B(4) và n\;\, < 17}

Hoặc:

A = {n\; = 4.k|\;k \in \mathbb{N} và k \le 4}

Bài 1.11 trang 19

Trong các tập hợp sau, tập hợp nào là tập hợp rỗng?

A = \left\{ {x \in \mathbb{R}|\;{x^2} - 6 = 0} \right\};

B = \left\{ {x \in \mathbb{Z}|\;{x^2} - 6 = 0} \right\}

Gợi ý đáp án

Ta có: {x^2} - 6 = 0 \Leftrightarrow x = \pm \sqrt 6 \in \mathbb{R}

\Rightarrow A = \left\{ { \pm \sqrt 6 } \right\}

Nhưng\pm \sqrt 6 \notin \mathbb{Z} nên không tồn tại x \in \mathbb{Z} để {x^2} - 6 = 0

Hay B = \emptyset .

Bài 1.12 trang 19

Cho X = \left\{ {\,a\,;b} \right\}. Các cách viết sau đúng hay sai? Giải thích kết luận đưa ra.

a) a \subset X

b)\left\{ a \right\} \subset X;

c) \emptyset \in X;

Gợi ý đáp án

a) Cách viết: a \subset X Sai vì a (là một phần tử của A) không phải là một tập hợp.

Hoặc a là một phần tử của A, nên ta phải dùng kí hiệu “ \in” thay vì “\subset ”.

Cách viết đúng: a \in X

b) Cách viết \left\{ a \right\} \subset X đúng, vì \left\{ a \right\} là một tập hợp, có duy nhất một phần tử là a và a \in X

Thế nên tập hợp \left\{ a \right\} là một tập con của X.

c) Cách viết \emptyset \in Xsai vì:

\emptysetlà một tập hợp (tập hợp rỗng), không phải là một phần tử.

Cách viết đúng: \emptyset \subset X (Tập hợp rỗng là tập con của mọi tập hợp).

Bài 1.13 trang 19

Cho A = \left\{ {2;5} \right\},\;\,B = \left\{ {5;x} \right\},\;\,C = \left\{ {2;y} \right\}. Tìm x,y để A = B = C.

Gợi ý đáp án

Để A = B

\begin{array}{l} \Rightarrow B \subset A\\ \Leftrightarrow \left\{ {5;x} \right\} \subset \left\{ {2;5} \right\}\\ \Leftrightarrow \left\{ \begin{array}{l}x \ne 5\\x \in \left\{ {2;5} \right\}\end{array} \right.\\ \Leftrightarrow x = 2\end{array}

Tương tự, ta có:

\begin{array}{l}A = C \Rightarrow C \subset A\\ \Leftrightarrow \left\{ {2;y} \right\} \subset \left\{ {2;5} \right\}\\ \Leftrightarrow \left\{ \begin{array}{l}y \ne 2\\y \in \left\{ {2;5} \right\}\end{array} \right.\\ \Leftrightarrow y = 5\end{array}

Vậy x = 2;y = 5 thì A = B = C.

Bài 1.14 trang 19

Cho \begin{array}{l}A = C \Rightarrow C \subset A\\ \Leftrightarrow \left\{ {2;y} \right\} \subset \left\{ {2;5} \right\}\\ \Leftrightarrow \left\{ \begin{array}{l}y \ne 2\\y \in \left\{ {2;5} \right\}\end{array} \right.\\ \Leftrightarrow y = 5\end{array}

a) Liệt kê các phần tử của hai tập hợp A và B.

b) Hãy xác định các tập hợp A \cap B,A \cup B và A\,{\rm{\backslash }}\,B

Gợi ý đáp án

a) A = { 3;2;1;0; - 1; - 2; - 3;...}

Tập hợp B là tập các nghiệm nguyên của phương trình \left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0

Ta có:

\begin{array}{l}\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}5x - 3{x^2} = 0\\{x^2} + 2x - 3 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left[ \begin{array}{l}x = 0\\x = \frac{5}{3}\end{array} \right.\\\left[ \begin{array}{l}x = 1\\x = - 3\end{array} \right.\end{array} \right.\end{array}

Vậy B = \left\{ { - 3;0;1} \right\}.

b) A \cap B = \left\{ {x \in A|x \in B} \right\} = \{ - 3;0;1\} = B

A \cup B = {x \in A hoặc x \in B} = \{ 3;2;1;0; - 1; - 2; - 3;...\} = A

A\,{\rm{\backslash }}\,B = \left\{ {x \in A|x \notin B} \right\} = \{ 3;2;1;0; - 1; - 2; - 3;...\} {\rm{\backslash }}\;\{ - 3;0;1\} = \{ 3;2; - 1; - 2; - 4; - 5; - 6;...\}

Bài 1.15 trang 19

Xác định các tập hợp sau và biểu diễn chúng trên trục số.

a) ( - 4;1] \cap [0;3)

b) (0;2] \cup [ - 3;1)

c) ( - 2;1) \cap ( - \infty ;1]

d) \mathbb{R}{\rm{\backslash }}( - \infty ;3]

Gợi ý đáp án

a) Ta có:

Giao của hai tập hợp là ( - 4;1] \cap [0;3) = \left[ {0;1} \right]

b) Ta có:

Hợp của hai tập hợp là (0;2] \cup ( - 3;1] = ( - 3;2]

c) Ta có:

Giao của hai tập hợp là ( - 2;1) \cap ( - \infty ;1] = ( - 2;1)

d) Ta có:

Phần bù của tập hợp( - \infty ;3] trong \mathbb{R} là \mathbb{R}{\rm{\backslash }}( - \infty ;3] = (3; + \infty )

Bài 1.16 trang 19

Để phục vụ cho một hội nghị quốc tế, ban tổ chức huy động 35 người phiên dịch tiếng Anh, 30 người phiên dịch tiếng Pháp, trong đó có 16 người phiên dịch được cả hai thứ tiếng Anh và Pháp. Hãy trả lời các câu hỏi sau:

a) Ban tổ chức đã huy động bao nhiêu người phiên dịch cho hội nghị đó?

b) Có bao nhiêu người chỉ phiên dịch được tiếng Anh?

c) Có bao nhiêu người chỉ phiên dịch được tiếng Pháp?

Gợi ý đáp án 

Gọi A là tập hợp những người phiên dịch tiếng Anh, B là tập hợp những người phiên dịch tiếng Pháp.

Ta có:n\left( A \right) = 35, n\left( B \right) = 30.

Biểu đồ Ven

a) n\;\left( {A \cup B} \right) = n\;(A) + n\;(B) - n\;(A \cap B) = 35 + 30 - 16 = 49

Vậy ban tổ chức đã huy động 49 người phiên dịch cho hội nghị đó

b) n\;\left( {A\,{\rm{\backslash }}\,B} \right) = n\;(A) - n\;(A \cap B) = 35 - 16 = 19

Vậy có 19 người chỉ phiên dịch được tiếng Anh

c) n\left( {B\,{\rm{\backslash }}\,{\rm{A}}} \right) = n\;(B) - n\;(B \cap A) = 30 - 16 = 14

Vậy có 14 người chỉ phiên dịch được tiếng Pháp

Liên kết tải về

pdf Toán 10 Bài 2: Tập hợp và các phép toán trên tập hợp

Chủ đề liên quan

Học tập

Lớp 10

Toán 10 KNTT

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK