Tìm các giá trị của m và n sao cho đa thức P (x) = mx^3 + (m – 2)x^2 – (3n – 5)x – 4n

Câu hỏi :

Tìm các giá trị của m và n sao cho đa thức P(x)=mx3+(m2)x2(3n5)x4n đồng thời chia hết cho x + 1 và x – 3

A. m=229;  n=7

B. m=229;  n=7

C. m=229;  n=7

D. m=7;  n=229

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Ta sử dụng: Đa thức P(x) chi hết cho đa thức (x – a) khi và chỉ khi P(a) = 0

Áp dụng mệnh đề trên với a = −1, rồi với a = 3, ta có:

P(1)=m(1)3+(m2)(1)2(3n5)(1)4n=n7

P(3)=m.33+(m2).32(3n5).34n=36m13n3

Theo giả thiết, P(x) chia hết cho x + 1 nên P(−1) = 0 tức là –n – 7 = 0

Tương tự, vì P(x) chia hết cho x – 3 nên P(3) = 0 tức là 36m – 13n – 3 = 0

Vậy ta giải hệ phương trình

n7=036m13n3=0n=736m13.73=0n=7m=229

Trả lời: Vậy m=229;  n=7

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK