Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Bài 8. Hàm số liên tục Câu 50 trang 175 SGK Đại số và Giải tích 11 Nâng cao

Câu 50 trang 175 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Chứng minh rằng :

a. Hàm số

\(f\left( x \right) = \left\{ {\matrix{{{{\left( {x + 1} \right)}^2}\,\text{ với }\,x \le 0} \cr {{x^2} + 2\,\text{ với }\,x > 0} \cr} } \right.\)

Gián đoạn tại điểm x = 0

b. Mỗi hàm số

\(g\left( x \right) = \sqrt {x - 3} \,\text{ và }\,h\left( x \right) = \left\{ {\matrix{{{1 \over {x - 2}}\,\text{ với }\,x \le 1} \cr { - {1 \over x}\,\text{ với }\,x > 1} \cr} } \right.\)

liên tục trên tập xác định của nó.

Hướng dẫn giải

a. Ta có:

\(\eqalign{
& \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {{x^2} + 2} \right) = 2 \cr
& \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} {\left( {x + 1} \right)^2} = 1 \cr} \)

Suy ra hàm số f gián đoạn tại \(x = 0\)

b. Tập xác định của hàm số  \(g\left( x \right) = \sqrt {x - 3} \) là \(\left[ {3; + \infty } \right)\)

Với x0> 3 ta có  \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \sqrt {x - 3} = \sqrt {{x_0} - 3} = g\left( {{x_0}} \right)\)

Nên g liên tục trên khoảng \(\left( {3; + \infty } \right),\) ngoài ra :

\(\mathop {\lim }\limits_{x \to {3^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} \sqrt {x - 3} = 0 = g\left( 3 \right)\)

Vậy g liên tục trên  \(\left[ {3; + \infty } \right)\)

*Tập xác định của hàm số 

\(h\left( x \right) = \left\{ {\matrix{{{1 \over {x - 2}}\,\text{ với }\,x \le 1} \cr { - {1 \over x}\,\text{ với }\,x > 1} \cr} \,\text{ là }\,\mathbb R} \right.\)

Rõ ràng h liên tục trên \((-∞; 1)\) và trên \((1 ; +∞)\) (Vì trên các khoảng này h là hàm phân thức)

Tại x0 = 1 ta có :

\(\eqalign{
& \mathop {\lim }\limits_{x \to {1^ - }} h\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} {1 \over {x - 2}} = - 1;\cr &\mathop {\lim }\limits_{x \to {1^ + }} h\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} {{ - 1} \over x} = - 1 \cr
& \Rightarrow \mathop {\lim }\limits_{x \to {1^ - }} h\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} h\left( x \right) = h\left( 1 \right) \cr &\Rightarrow h\,\text{ liên tục tại }x = 1 \cr} \)

Vậy h liên tục trên \(\mathbb R\). 

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK