Cho phương trình \(3x^2– 2(m + 1)x + 3m – 5 = 0\).
Xác định \(m\) để phương trình có một nghiệm gấp ba nghiệm kia. Tính các nghiệm trong trường hợp đó
Giả sử phương trình có hai nghiệm \(x_1\) và \(x_2\), phương trình có một nghiệm gấp ba nghiệm kia nên ta có: \({x_2} = 3{x_1}\).
Theo định lí Viet ta có:
\({x_1} + {x_2} = 4{x_1} = {{2(m + 1)} \over 3} \Rightarrow {x_1} = {{m + 1} \over 6}\)
Thay \(x_1=\frac{m+1}{6}\) vào phương trình ta được:
\(3.{\left( {{{m + 1} \over 6}} \right)^2} - 2(m + 1).{{m + 1} \over 6}\)\( + 3m - 5 = 0 \)
\(\eqalign{
& \Leftrightarrow - 3{m^2} + 30m - 63 = 0 \cr
& \Leftrightarrow \left[ \matrix{
m = 3 \hfill \cr
m = 7 \hfill \cr} \right. \cr} \)
+) Với \(m = 3\) phương trình có hai nghiệm \(x_1=\frac{2}{3}\); \(x_2= 2\).
+) Với \(m = 7\) phương trình có hai nghiệm \(x_1=\frac{4}{3}\); \(x_2= 4\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK