Xác định \(a, b\) để đồ thị của hàm số \(y = ax + b\) đi qua các điểm.
a) \(A(0; 3)\) và \(B=(\frac{3}{5};0)\);
b) \(A(1; 2)\) và \(B(2; 1)\);
c) \(A(15;- 3)\) và \(B(21;- 3)\).
Đồ thị hàm số đi qua điểm tức là điểm đó thỏa mãn phương trình của đồ thị hàm số đó.
Muốn tìm a, b ta chỉ cần thay tọa độ từng điểm A, B vào phương trình sau đó giải hệ phương trình với 2 ẩn a, b là tìm được.
Lời giải chi tiết
a) Đồ thị hàm số \(y=ax+b\) đi qua \(A,B\) nên tọa độ của \(A,B\) thỏa mãn phương trình \(y=ax+b\) ta được hệ phương trình: \(\left\{\begin{matrix} 3=a.0 + b\\ 0=a.\frac{3}{5}+b \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=-5\\ b=3 \end{matrix}\right.\)
Vậy phương trình của đường thẳng đi qua \(A(0; 3)\) và \(B=\left (\frac{3}{5};0 \right )\) là: \(y = - 5x + 3\).
b)Đồ thị hàm số \(y=ax+b\) đi qua \(A,B\) nên tọa độ của \(A,B\) thỏa mãn phương trình \(y=ax+b\) ta được hệ phương trình:
\(\left\{\begin{matrix} 2=a.1 + b\\ 1=a.2+b \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=-1\\ b=3 \end{matrix}\right.\)
Phương trình đường thẳng cần tìm là: \(y=-x+3\)
c)Đồ thị hàm số \(y=ax+b\) đi qua \(A,B\) nên tọa độ của \(A,B\) thỏa mãn phương trình \(y=ax+b\) ta được hệ phương trình:
\(\left\{\begin{matrix} -3=a.15 + b\\ -3=a.21+b \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=0\\ b=-3 \end{matrix}\right.\)
Phương trình đường thẳng cần tìm là: \(y=-3\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK