a) Chứng minh tứ giác AEHF là hình chữ nhật.
vuông tại A
Vì , nên .
Xét tứ giác AEHF ta có:
Suy ra, tứ giác AEHF là hình chữ nhật (dấu hiệu nhận biết).
b) Gọi D là điểm đối xứng của A qua F. Chứng minh DHEF là hình bình hành.
Vì AEHF là hình chữ nhật suy ra EH // AF và EH = AF (tính chất của hình chữ nhật)
Vì D là tâm đối xứng của A qua F nên F là trung điểm của AD. Suy ra, AF = FD.
Do đó, EH // FD và EH = FD.
Suy ra, DHEF là hình bình hành (dấu hiệu nhận biết)
c) Gọi I là giao điểm của EF và AH; M là trung điểm của BC. Qua A kẻ tia Ax vuông góc với đường thẳng MI cắt tia CB tại K. Chứng minh 4 điểm K, E, I, F thẳng hàng.
+) Vì I là giao điểm của EF và AH nên ba điểm E, I, F thẳng hàng.
+) Gọi O là giao điểm của EF và AM.
Vì AM là đường trung tuyến của nên AM = MC suy ra cân tại M. Do đó, .
Vì EHFA là hình chữ nhật, có I là giao điểm hai đường chéo nên ta có .
Xét ta có: hay
hay
Xét có suy ra
=> EF vuông góc với AM tại O hay IF vuông góc với AM tại O.
+) Xét ta có:
tại G
tại H
Mà I là giao điểm của AH và GM nên I là trực tâm của .
mà
=> K, I, F thẳng hàng.
Ta có:
Ba điểm E, I, F thẳng hàng.
Ba điểm K, I, F thẳng hàng.
=> Bốn điểm I, K, E, F thẳng hàng.
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm thứ ba ở cấp trung học cơ sở, học tập bắt đầu nặng dần, sang năm lại là năm cuối cấp áp lực lớn dần nhưng các em vẫn phải chú ý sức khỏe nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK