a) Chứng minh AE = 2AB và tứ giác AECD là hình vuông.
Vì E là điểm đối xứng với A qua B nên B là trung điểm của AE. Do đó, AE = 2AB.
Theo đề bài ta có: AD = CD = 2AB
=> AD = CD = AE.
Vì ABCD là hình thang vuông nên ta có:
Xét tứ giác AECD ta có:
AE // CD
AE = CD
=> Tứ giác AECD là hình bình hành (dấu hiệu nhận biết).
Mà ta lại có: AD = AE (chứng minh trên)
=> Tứ giác AECD là hình thoi (dấu hiệu nhận biết)
Theo giả thiết:
Suy ra, tứ giác AECD là hình vuông (dấu hiệu nhận biết)
b) Gọi M là trung điểm của EC và I là giao điểm của BC và DM. Chứng minh diện tích tam giác DIC bằng diện tích tứ giác EBIM.
Vì tứ giác AECD là hình vuông nên AE = CE = CD = DA (định nghĩa hình vuông)
Vì M là trung điểm của EC nên EM = CM .
Mà và AE = CE (chứng minh trên).
=> BE = CM
Ta có:
(đpcm)
c) Biết DA và CB cắt nhau tại V. Gọi N là hình chiếu của I trên AD. Chứng minh .
Xét tam giác BEC và tam giác MCD ta có:
BE = MC (cmt)
EC = CE (cmt)
(c-g-c)
(hai góc tương ứng)
Ta có:
Xét tam giác DIC ta có: (áp dụng định lý tổng ba góc trong một tam giác)
=> DI vuông góc với BC tại I.
Xét tam giác DNI vuông tại N, áp dụng định lý Py-ta-go ta có:
Xét tam giác VNI vuông tại N, áp dụng định lý Py-ta-go ta có:
Xét tam giác DVI vuông tại I, áp dụng định lý Py-ta-go ta có:
.
Vậy .
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm thứ ba ở cấp trung học cơ sở, học tập bắt đầu nặng dần, sang năm lại là năm cuối cấp áp lực lớn dần nhưng các em vẫn phải chú ý sức khỏe nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK