Cho A= 1234 …..20132014 ( số được viết bởi các số tự nhiên liên tiếp từ 1đến 2014. Tìm số dư của phép chia A cho 3

Câu hỏi :

Cho A= 1234 …..20132014 ( số được viết bởi các số tự nhiên liên tiếp từ 1đến 2014. Tìm số dư của phép chia A cho 3?

* Đáp án

* Hướng dẫn giải

- Ta chia các số tự nhiên từ 1 đến 2014 thành 3 nhóm: từ 000 đến 999, từ 1000 đến 1999, từ 2000 đến 2014
- Ta thấy: từ 000 đến 999 có: 999 + 1 = 1000 (số) và có 3 x 1000 = 3000 (chữ số) được chia đều cho 10 chữ số từ 0 đến 9.
Số lần xuất hiện của mỗi chữ số là:
3000 : 10 = 300 (lần)
Tổng các chữ số từ 000 đến 999 là: (0+1+2+3+4+5+6+7+8+9) x 300 = 13500
- Tương tự như vậy cho các số từ 1000 đến 1999 lại có thêm 1000 chữ số 1.
Tổng của nhóm 2 là: 1000 + 13500 = 14500
- Tổng các chữ số từ 2000 đến 2014 : 2 + 3 + 4 +5 +6 +7 +8 +9 + 10 +11 +3 +4 +5 +6 +7 =90
- Tổng các chữ số của A : 13500 + 14500 + 90 = 28090
- Vì 28090 chia 3 dư 1 nên A chia 3 dư 1

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 5

Lớp 5 - Là năm cuối cấp tiểu học, áp lực thi cử nhiều mà sắp phải xa trường lớp, thầy cô, ban bè thân quen. Đây là năm mà các em sẽ gặp nhiều khó khăn nhưng các em đừng lo nhé mọi chuyện sẽ tốt lên thôi !

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK