Hình chữ nhật ABCD, AE = EB, BF = FC. tính diện tích phần gạch chéo

Câu hỏi :

Hình chữ nhật ABCD, AE = EB, BF = FC. tính diện tích phần gạch chéo

* Đáp án

* Hướng dẫn giải

Gọi I, K lần lượt là giao điểm của AC với ED và DF với AC. Gọi a,b là chiều dài, chiều rộng của hình chữ nhật. Kẻ EN, DM vuông góc với AC (N, M thuộc AC).

Ta có diện tích tam giác AED bằng ¼ ab, diện tíchtam giác FCD bằng ¼ ab, suy ra diện tích tứ giác EBFD bằng ½ ab. (*)

Ta lại có, SABC =SAEI + SEBFKI + SFKC = ½ AB (**)

Từ (*) và (**) suy ra SDIK = SAEI + SFKC

Lập luận tương tự ta suy ra SEBFKI = SAID + SCKD.

Từ đó suy ra 2(SAEI + SFKC) + 2(SAID + SCKD)= SABCD (tức là bằng a/b) (1)

DM là đường cao trong tam giác vuông ACD nên (1/DM)2=(1/a)2+(1/b)2

Tương dương DM= (ab)2/(a2+b2).

Gọi O là trung điểm của AC.

Ta có tam giác EDO đồng dạng tam giấcEO(g,g,g)

Suy ra EN/AE = EO/AO =(1/2b)/(1/2AC)=b/AC

Tương đương EN=b×AE/AC= (b×1/2a)/AC =

ab/2a2+b2

Từ đó, ta có SAID = ½ DM×AI= ½(ab)2/(a2+b2)×AI.

Suy ra SAID/SAEI= 2ab/2a2+b2

Làm tương tự để xác định tỉ số SDKC/SBKC

Sau đó rút ra gia trị của tổng diện tích các tam giác(phân gạch chéo)

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 5

Lớp 5 - Là năm cuối cấp tiểu học, áp lực thi cử nhiều mà sắp phải xa trường lớp, thầy cô, ban bè thân quen. Đây là năm mà các em sẽ gặp nhiều khó khăn nhưng các em đừng lo nhé mọi chuyện sẽ tốt lên thôi !

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK