Hướng dẫn giải
a) Câu a) đúng.
Giải thích:
+ Giả sử tam giác ABC cân tại đỉnh A có góc ở đáy \(\widehat B\) = 60°.
Khi đó, \(\widehat C = \widehat B = 60^\circ \).
Theo định lí tổng ba góc trong tam giác, ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \).
\( \Rightarrow \widehat A = 180^\circ - \widehat B - \widehat C = 180^\circ - 60^\circ - 60^\circ = 60^\circ \).
Do đó, \(\widehat A = \widehat B = \widehat C = 60^\circ \), nên tam giác ABC cân tại đỉnh C.
Vậy tam giác ABC đều.
+ Giả sử tam giác ABC cân tại đỉnh A có góc ở đỉnh \(\widehat A = 60^\circ \).
Theo định lí tổng ba góc trong tam giác, ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \).
Mà \(\widehat B = \widehat C\) (do tam giác ABC cân đỉnh A).
Do đó, \(\widehat B + \widehat B = 180^\circ - \widehat A = 180^\circ - 60^\circ = 120^\circ \), suy ra \(\widehat B = 60^\circ \).
Do đó, \(\widehat A = \widehat B = \widehat C = 60^\circ \), nên tam giác ABC cân tại đỉnh C.
Vậy tam giác ABC đều.
b) Câu b) sai.
Chẳng hạn tam giác ABC cân tại đỉnh A có \(\widehat A = 100^\circ \), \(\widehat B = \widehat C = 40^\circ \), đây là tam giác tù.
c) Từ định lí tổng ba góc trong tam giác, ta suy ra tổng hai góc nhọn của một tam giác vuông bằng 90°.
Vậy câu c) đúng.
d) Tam giác vuông cân thì luôn cân tại đỉnh góc vuông và có hai góc nhọn bằng 45° là câu đúng.
Giả sử có tam giác ABC vuông tại A, cân tại B, khi đó \(\widehat A = \widehat C = 90^\circ \), do đó \(\widehat A + \widehat B + \widehat C > 180^\circ \) không thỏa mãn định lí tổng ba góc trong tam giác.
Vậy tam giác vuông cân thì luôn cân tại đỉnh góc vuông và từ định lí tổng ba góc và tính chất của tam giác cân, ta tính được số đo hai góc nhọn bằng 45°.
Vậy câu a), c), d) đúng và câu b) sai.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK