Cho hình thang ABCD có hai đáy là AB và DC. Cho biết vecto a = vecto AC + vecto CB, vecto b = vecto DB + vecto BC . Chứng minh hai vectơ

Câu hỏi :

Cho hình thang ABCD có hai đáy là AB và DC. Cho biết a=AC+CB;   b=DB+BC. Chứng minh hai vectơ a b cùng hướng.

* Đáp án

* Hướng dẫn giải

Media VietJack

Vì ABCD là hình thang với AB và DC là hai đáy nên AB // DC.

Do đó hai vectơ AB DC cùng phương, hơn nữa chúng cùng hướng đi từ trái qua phải.

Nên hai vectơ AB DC cùng hướng.

Theo quy tắc ba điểm ta có:

a=AC+CB=AB

b=DB+BC=DC

Vậy hai vectơ a b cùng hướng.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Tổng và hiệu của hai vectơ có đáp án !!

Số câu hỏi: 53

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 10

Lớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK