Để leo lên một bức tường, bác Nam dùng một chiếc thang có chiều dài cao hơn bức tường đó 1 m. Ban đầu, bác Nam đặt chiếc thang mà đầu trên của chiếc thang đó vừa chạm đúng và mép trên bức tường (Hình 33a). Sau đó, bác Nam dịch chuyển chân thang vào gần chân tường thêm 0,5 m thì bác Nam nhận thấy thang tạo với mặt đất một góc 60° (Hình 33b). Bức tường cao bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Gọi chiều cao của bức tường là x (mét) (x > 0).
Vì chiếc thang cao hơn tường 1 m nên chiều cao của chiếc thang là x + 1 (m).
Khi đó quan sát Hình 33a ta thấy, AC = x, AB = x + 1, tam giác ABC vuông tại C, áp dụng định lý Pythagore ta có: AB2 = AC2 + BC2
Suy ra: BC2 = AB2 – AC2 = (x + 1)2 – x2 = 2x + 1 (m).
Quan sát Hình 33b, ta thấy chiều cao bức tường không thay đổi nên DG = x (m).
Khi bác Nam dịch chuyển chân thang vào gần tường thêm 0,5 m thì GE = BC – 0,5.
Suy ra (m)
Lại có tam giác DGE vuông tại G nên ta có:
Mà , DG = x,
Do đó:
Suy ra:
(1)
Bình phương hai vế của (1) ta được:
Do x > 0 nên x ≈ 4,7 là giá trị thỏa mãn.
Vậy bức tường cao khoảng 4,7 m.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK