Trang chủ Toán Học Lớp 6 Chứng minh rằng trong 7 số tự nhien bất kì...

Chứng minh rằng trong 7 số tự nhien bất kì có ba số có tổng chia hết cho 3 câu hỏi 2747648 - hoctapsgk.com

Câu hỏi :

Chứng minh rằng trong 7 số tự nhien bất kì có ba số có tổng chia hết cho 3

Lời giải 1 :

Đáp án+Giải thích các bước giải:

Đặt 7 số TN đó là A, B, C, D, E, F, G. Lấy kết quả của bài 1: Trong 3 số tự nhiên bất kỳ luôn có 2 số là số chẵn ( chia hết cho 2)

A, B, C Và D, E, F mỗi nhóm có 1 cặp chia hết cho 2

* Giả thử (A+B) =2 m và (D+E)=2n –> (A+B) + (C+D)= 2(m+n)

Còn 3 số C F G sẽ có 1 cặp chia hết cho 2

( C + F) = 2 p Với m,n,p cúng là số tự nhiên

Trong 3 số m, n, p luôn chọn được 2 số có tổng chia hết cho 2.

*Giả thử (m + n) =2 q ( q là số TN) thì ta có

(A+B) + (C+D)= 2(m+n) = 3q ==> A+B+C+D chia hết cho 3 (ĐPCM)

Tương tự nếu chon các nhóm số khác ta cũng được 3 số trong 7 số bât kỳ trên chia hết cho 3

Thảo luận

Lời giải 2 :

số 333 ; 336 ; 339 ; 363 ; 366 ; 369 ; 393 đều chia hết cho 3

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự 6

Lớp 6 - Là năm đầu tiên của cấp trung học cơ sở. Được sống lại những khỉ niệm như ngày nào còn lần đầu đến lớp 1, được quen bạn mới, ngôi trường mới, một tương lai mới!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK