Trang chủ Toán Học Lớp 11 Một tập thể gồm 14 người, 6 nam và 8...

Một tập thể gồm 14 người, 6 nam và 8 nữ. Người ta muốn chọn 1 tổ công tác gồm 6 người, tìm số cách chọn sao cho trong tổ phải có cả nam lẫn nữ

Câu hỏi :

Một tập thể gồm 14 người, 6 nam và 8 nữ. Người ta muốn chọn 1 tổ công tác gồm 6 người, tìm số cách chọn sao cho trong tổ phải có cả nam lẫn nữ

Lời giải 1 :

Đáp án: $2974$ cách

 

Giải thích các bước giải:

Chọn 6 người trong 14 người có: $C_{14}^6=3003$ cách

 

Tổ công tác có toàn nam, hoặc có toàn nữ

Th1 nếu tổ công tác toàn nam

Chọn 6 nam trong 6 nam có $C_6^6=1$ cách

Th2 nếu tổ công tác toàn nữ

Chọn 6 nữ trong 8 nữ có $C_8^6$ cách

$\Rightarrow $ để chọn một tổ công tác có toàn nam hoặc toàn nữ có $C_6^6+C_8^6=29$ cách

Vậy số cách để chọn một tổ cộng tác có cả nam và nữ là:

$3003-29=2974$ cách.

Thảo luận

Lời giải 2 :

Đáp án:

Giải thích các bước giải:

số cách chọn tổ đó ko có nam là 8C6

số cách chọn tổ đó ko cos nữ là 6C6

=> số cách chọn tổ đó có cả nam, nữ là 14C6-8C6-6C6=2974

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK