Trang chủ Toán Học Lớp 8 chứng minh một tam gíc có 2 đường cao bằng...

chứng minh một tam gíc có 2 đường cao bằng nhau thì tam giác đó là tam giác cân. Từ đó suy ra một tam giác có 3 đường cao = nhau thì tam giác đó là tam giác đề

Câu hỏi :

chứng minh một tam gíc có 2 đường cao bằng nhau thì tam giác đó là tam giác cân. Từ đó suy ra một tam giác có 3 đường cao = nhau thì tam giác đó là tam giác đều làm cụ thể đừng làm tắt

Lời giải 1 :

+ TH1: Xét ΔABC vuông tại A có các đường cao AD, BA, CA.
BA, CA là hai đường cao xuất phát từ hai góc nhọn B và C của ΔABC.
AB = AC

⇒ ΔABC cân tại A (đpcm).
+ TH2: Xét ΔABC không có góc nào vuông, hai đường cao BD = CE 
Xét hai tam giác vuông EBC và DCB có :
BC (cạnh chung)
CE = BD (giả thiết)
⇒ ∆EBC = ∆DCB (cạnh huyền - cạnh góc vuông)
+ Xét ΔABC ba đường cao BD = CE = AF 
CE = BD ⇒ ΔABC cân tại A (như cmt) ⇒ AB = AC.
CE = AF ⇒ ΔABC cân tại B (như cmt) ⇒ AB = BC:
⇒ AB = AC = BC
⇒ ΔABC đều.

 

Thảo luận

Lời giải 2 :

xin ctlhn ạ

image

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự 8

Lớp 8 - Năm thứ ba ở cấp trung học cơ sở, học tập bắt đầu nặng dần, sang năm lại là năm cuối cấp áp lực lớn dần nhưng các em vẫn phải chú ý sức khỏe nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK