Giải thích các bước giải:
1.Xét $\Delta HEC,\Delta HBF$ có:
$\widehat{EHC}=\widehat{FHB}$
$\widehat{HEC}=\widehat{HFB}(=90^o)$
$\to\Delta HEC\sim\Delta HFB(g.g)$
$\to\dfrac{HE}{HF}=\dfrac{HC}{HB}$
$\to HE.HB=HF.HC$
$\to\dfrac{HE}{HC}=\dfrac{HF}{HB}$
Mà $\widehat{FHE}=\widehat{BHC}$
$\to\Delta HEF\sim\Delta HCB(c.g.c)$
$\to\widehat{HEF}=\widehat{HCB}$
$\to\widehat{BEF}=\widehat{BCF}$
2.Ta có $BE\perp AC, CF\perp AB, BE\cap CH=H$
$\to H$ là trực tâm $\Delta ABC\to AH\perp BC\to AK\perp BC$
Xét $\Delta BKA,\Delta BFC$ có:
Chung $\hat B$
$\widehat{BKA}=\widehat{BFC}(=90^o)$
$\to\Delta BKA\sim\Delta BFC(g.g)$
$\to\dfrac{BK}{BF}=\dfrac{BA}{BC}$
$\to BK.BC=BF.BA$
Tương tự $CE.CA=CK.CB, AE.AC=AF.AB$
Ta có:
$2(AE.AC+CK.CB+BF.BA)$
$=(AE.AC+CK.CB)+(AE.AC+BF.BA)+(CK.CB+BF.BA)$
$=(AE.AC+CE.CA)+(AF.AB+BF.BA)+(CK.CB+BK.BC)$
$=AC^2+AB^2+BC^2$
$\to đpcm$
3.Xét $\Delta BHK,\Delta BEC$ có:
Chung $\hat B$
$\widehat{BKH}=\widehat{BEC}(=90^o)$
$\to\Delta BHK\sim\Delta BCE(g.g)$
$\to\dfrac{BH}{BC}=\dfrac{BK}{BE}$
$\to\dfrac{BH}{BK}=\dfrac{BC}{BE}$
Mà $\widehat{EBK}=\widehat{HBC}$
$\to\Delta BKE\sim\Delta BHC(c.g.c)$
$\to\widehat{BEK}=\widehat{BCH}=\widehat{BCF}=\widehat{BEF}$
$\to EH$ là phân giác $\widehat{JEK}$
Mà $EA\perp EH$
$\to EA$ là phân giác ngoài tại đỉnh $E$ của $\Delta EJK$
$\to \dfrac{HJ}{HK}=\dfrac{AJ}{AK}$
$\to\dfrac{HJ}{AJ}=\dfrac{HK}{AK}$
3b.Ta cần chứng minh:
$\dfrac{2}{KJ}=\dfrac1{KH}+\dfrac1{AK}$
$\leftrightarrow \dfrac{2}{KJ}=\dfrac1{KH}+\dfrac1{AK}$
$\leftrightarrow \dfrac{1}{KJ}-\dfrac1{AK}=\dfrac1{KH}-\dfrac{1}{KJ}$
$\leftrightarrow \dfrac{AK-KJ}{KJ\cdot AK}=\dfrac{KJ-KH}{KJ\cdot KH}$
$\leftrightarrow \dfrac{AJ}{KJ\cdot AK}=\dfrac{HJ}{KJ\cdot KH}$
$\leftrightarrow \dfrac{AJ}{ AK}=\dfrac{HJ}{KH}$ luôn đúng vì $\dfrac{HJ}{AJ}=\dfrac{HK}{AK}$
$\to đpcm$
4.Ta có:
$\dfrac{HK}{AK}=\dfrac{S_{HBC}}{S_{ABC}}$
$\dfrac{HE}{BE}=\dfrac{S_{HAC}}{S_{ABC}}$
$\dfrac{HF}{CF}=\dfrac{S_{AHB}}{S_{ABC}}$
$\to \dfrac{HK}{AK}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=\dfrac{S_{HBC}+S_{HAC}+S_{AHB}}{S_{ABC}}=\dfrac{S_{ABC}}{S_{ABC}}=1$
5.Xét $\Delta KHB,\Delta KAC$ có:
$\widehat{HKB}=\widehat{AKC}(=90^o)$
$\widehat{BHK}=90^o-\widehat{HBK}=90^o-\widehat{EBC}=\widehat{ECB}=\widehat{ACK}$
$\to\Delta KBH\sim\Delta KAC(g.g)$
$\to\dfrac{KB}{KA}=\dfrac{KH}{KC}$
$\to KH.KA=KB.KC\le\dfrac14(KB+KC)^2=\dfrac14BC^2=\dfrac14a^2$
Dấu = xảy ra khi $KB=KC\to K$ là trung điểm $BC\to AK\perp BC$ tại trung điểm $BC$
$\to\Delta ABC$ cân tại $A$
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm thứ ba ở cấp trung học cơ sở, học tập bắt đầu nặng dần, sang năm lại là năm cuối cấp áp lực lớn dần nhưng các em vẫn phải chú ý sức khỏe nhé!
Nguồn : ADMIN :))Xem thêm tại https://loigiaisgk.com/cau-hoi or https://giaibtsgk.com/cau-hoi
Copyright © 2021 HOCTAPSGK