Trang chủ Toán Học Lớp 5 Hải là một cầu thủ bóng đá chuyên nghiệp. Mỗi...

Hải là một cầu thủ bóng đá chuyên nghiệp. Mỗi ngày anh ra sân ít nhất 1 lần và mỗi tuần ra sân không quá 13 lần. Chứng minh rằng tồn tại một số ngày liên tiếp

Câu hỏi :

Hải là một cầu thủ bóng đá chuyên nghiệp. Mỗi ngày anh ra sân ít nhất 1 lần và mỗi tuần ra sân không quá 13 lần. Chứng minh rằng tồn tại một số ngày liên tiếp anh ra sân tổng cộng 20 lần.

Lời giải 1 :

Đáp án:

...................................... 

Giải thích các bước giải:

 gọi số lần Hải ra sân thứ nhất, thứ hai ,thứ ba ... , thứ hai mươi là a1 ,a2 ,a3 ..., a20 

xét  20 Tổng  : s1 = a1 ,s2 = a1 + a2 , ..., a20 = a1 + a2 + ... a20 ta có s1 < s2 <s3 ,.... <s20 <36

( vì trong 20 ngày hải chơi ít hơn 12 x 3 = 36 ván cờ) . 

theo câu a , tồn tại Sk  ⋮ 20 hoặc sm - sn ⋮ 20 ( 1≤ K ≤ 20 , 1 ≤ n < m ≤ 20 ) :

giá trị này bằng 20

Như vậy nếu sk = 20 thì a1 + a2 + ... + sk = 20 ; 

               Nếu sm - sn = 20 thì An + 1 , An + 2 + .... + Am = 20 .

 #Mong ctlhn 

# no copy

# AnhVũ2k9

Thảo luận

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự 5

Lớp 5 - Là năm cuối cấp tiểu học, áp lực thi cử nhiều mà sắp phải xa trường lớp, thầy cô, ban bè thân quen. Đây là năm mà các em sẽ gặp nhiều khó khăn nhưng các em đừng lo nhé mọi chuyện sẽ tốt lên thôi !

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK