Đáp án:
Giải thích các bước giải:
Câu 1:
a,b,c là số nguyên tố nên: a,b,c∈N∗và a,b,c≥2 Do đó,
ta có: c≥2^2+2^2>2 màc là số nguyên tố nên c phải là số lẻ:
Ta có: a^b+b^a+ba là số lẻ nên tồn tại a^b hoặc b^a chẵn mà a,b là số nguyên tố nên a=2 ∨ b=2 Xét 1 trường hợp, trường hợp còn lại tương tự: b=2 và a phải là số lẻ nên a=2k+1 k∈N∗
Ta có: 2^a+a^2=c Nếu a=3 thì c=17 thỏa mãn. Nếu a>3 mà a là số nguyên tố nên a không chia hết cho 3 suy ra: a^2 chia 3 dư 1. Ta có: 2^a=2^(k+1)=4^k.2−2+2=(4^k−1).2+2=BS(3)nên chia 3 dư 2 Từ đó, 2^a+a^2 ⋮3 nên c⋮3 suy ra c là hợp số, loại.
Vậy (a;b;c)=(2;3;17);(3;2;17)
Câu 3:
Đặt (a;c)=k thì a=ka1; c=kc1 Với (a1=1;c1=1)
=>ab = cd tương đương ba1 = dc1
Ta có: dc1 chia hết cho a1 mà (a1;c1) =1 nên d chia hết cho a1
=>d chia hết cho a1
Đặt d=a1d1 thay đc:
b= d1c1
Vậy an + bn +cn +dn = k2a1n + d1nc1n + kpnc1n +a1ld1n = (c1n + a1n)(d1n + kn)là hợp số
Đáp án:
Giải thích các bước giải:
Câu 1:
a,b,c là số nguyên tố nên: a,b,c∈N∗và a,b,c≥2 Do đó,
ta có: c≥2^2+2^2>2 màc là số nguyên tố nên c phải là số lẻ:
Ta có: a^b+b^a+ba là số lẻ nên tồn tại a^b hoặc b^a chẵn mà a,b là số nguyên tố nên a=2 ∨ b=2 Xét 1 trường hợp, trường hợp còn lại tương tự: b=2 và a phải là số lẻ nên a=2k+1 k∈N∗
Ta có: 2^a+a^2=c Nếu a=3 thì c=17 thỏa mãn. Nếu a>3 mà a là số nguyên tố nên a không chia hết cho 3 suy ra: a^2 chia 3 dư 1. Ta có: 2^a=2^(k+1)=4^k.2−2+2=(4^k−1).2+2=BS(3)nên chia 3 dư 2 Từ đó, 2^a+a^2 ⋮3 nên c⋮3 suy ra c là hợp số, loại.
Vậy (a;b;c)=(2;3;17);(3;2;17)
mình làm xong roOIf
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 6 - Là năm đầu tiên của cấp trung học cơ sở. Được sống lại những khỉ niệm như ngày nào còn lần đầu đến lớp 1, được quen bạn mới, ngôi trường mới, một tương lai mới!
Nguồn : ADMIN :))Xem thêm tại https://loigiaisgk.com/cau-hoi or https://giaibtsgk.com/cau-hoi
Copyright © 2021 HOCTAPSGK