Trang chủ Toán Học Lớp 6 Cho 3 số tự nhiên bất kỳ. Chứng minh rằng...

Cho 3 số tự nhiên bất kỳ. Chứng minh rằng luôn có 2 số mà tổng hoặc hiệu chi hết cho 3 câu hỏi 1811881 - hoctapsgk.com

Câu hỏi :

Cho 3 số tự nhiên bất kỳ. Chứng minh rằng luôn có 2 số mà tổng hoặc hiệu chi hết cho 3

Lời giải 1 :

Đáp án:

 

Giải thích các bước

Một số khi chia cho 3 dư là: 0 ; 1 ; 2.

 TH1: Trong 3 số đó có ít nhất 2 số khi chia cho 3 có cùng số dư. Suy ra hiệu của chúng chia hết cho 3

 TH2: Trong 3 số đó khi chia cho 3 được các số dư khác nhau là  0; 1 ; 2 . Vậy tổng của hai số có số dư là 1 và 2 sẽ chia hết cho 3.

Thảo luận

-- Vào nhóm mình không bạn ?

Lời giải 2 :

Đáp án:

 

Giải thích các bước giải:

Một số khi chia cho 3 dư là: 0 ; 1 ; 2.

 TH1 : Trong 3 số đó có ít nhất 2 số khi chia cho 3 có cùng số dư. Suy ra hiệu của chúng chia hết cho 3

 TH2 : Trong 3 số đó khi chia cho 3 được các số dư khác nhau là  0; 1 ; 2 . Vậy tổng của hai số có số dư là 1 và 2 sẽ chia hết cho 3.

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự 6

Lớp 6 - Là năm đầu tiên của cấp trung học cơ sở. Được sống lại những khỉ niệm như ngày nào còn lần đầu đến lớp 1, được quen bạn mới, ngôi trường mới, một tương lai mới!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK