bài 1
h.143
xét Δ vuông ABH và Δ vuông ACH có
AH là cạnh chung
HB=HC (gt)
=> ΔABH=ΔACH ( 2 cạnh góc vuông )
h.144
xét Δ vuông DKE và Δ vuông DKF có
DK là cạnh chung
góc EDK= góc FDK ( gt )
=> ΔDKE= ΔDKF ( cạnh góc vuông góc nhọn )
h.145
xét Δ vuông QIN và Δ vuông QIM có
QI là cạnh chung
góc MQI= góc NQI ( gt )
=> ΔQIN= ΔQIM ( cạnh góc vuông góc nhọn )
bài 2
ΔABC cân tại A
=> AB=AC, góc B= góc C
c1:
xét Δ vuông ABH và Δ vuông ACH có
AH là cạnh chung
AB=AC
=> ΔABH= ΔACH ( cạnh huyền cạnh góc vuông )
c2:
xét Δ vuông ABH và Δ vuông ACH có
AH là cạnh chung
góc B= góc C
=> ΔABH= ΔACH ( cạnh góc vuông góc nhọn )
( ngoài lề c3: )
xét Δ vuông ABH và Δ vuông ACH có
AB=AC
góc B= góc C
=> ΔABH= ΔACH ( cạnh huyền góc nhọn )
--hoctot--
xin câu trả lời hay nhất về cho nhóm !!
Bài 1:
H143:XÉT ΔABH VÀ ΔACH
AH là cạnh chung
∠AHB=∠AHC=90độ(gt)
BH=CH(gt)
⇒ΔABH=ΔACH(c-g-c)
H144:Xét ΔDEK và ΔDFK
∠EDK=∠FDK(gt)
DE là cạnh chung(gt)
∠DKE=∠DKF(gt)
⇒ΔDEK=ΔDFK(g-c-g)
H145:Xét ΔOMI và ΔONI
∠MOI=∠NOI(gt)
OI là canh chung(gt)
∠OMI=∠ONI(gt)
⇒ ΔOMI=ΔONI(g-c-g)
Bài 2:Cách 1:
Xét ΔABH và ΔACH,ta có:
AH là cạnh chung(gt)
∠AHB=∠AHC=90 độ(gt)
AB=AC(gt)
⇒ΔABH=ΔACH(c-g-c)
cách 2:
Xét ΔABH và ΔACH,ta có:
BH=CH(Trong tam giác cân, đường cao cũng là đường trung tuyến)
AH là cạnh chung(gt)
AB=AC(gt)
⇒⇒ΔABH=ΔACH(c-c-c)
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!
Nguồn : ADMIN :))Xem thêm tại https://loigiaisgk.com/cau-hoi or https://giaibtsgk.com/cau-hoi
Copyright © 2021 HOCTAPSGK