Trang chủ Toán Học Lớp 7 Cho tam giác ABC có các điểm E và F...

Cho tam giác ABC có các điểm E và F lần lượt là trung điểm các cạnh AB và AC. Trên tia đối FB lấy FN=FB. Trên tia đối EC lấy EM=EC

Câu hỏi :

Cho tam giác ABC có các điểm E và F lần lượt là trung điểm các cạnh AB và AC. Trên tia đối FB lấy FN=FB. Trên tia đối EC lấy EM=EC a, cmr :AM=BC b,cmr : MA=NA c,cmr 3 điểm M,A,N thẳng hàng Vẽ hộ mik hình nx

Lời giải 1 :

a) Xét ΔABF và ΔCNF có:

       AF = CF (F là trung điểm của AC)

        ∠AFB = CFN (2 góc đối đỉnh)

        FB = FN (gt)

⇒ ΔABF = ΔCNF (c.g.c)

⇒ ∠ABF = ∠CNF (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong  ⇒ AB // NC

Xét ΔACE và ΔBME có:

      AE = BE (E là trung điểm của AB)

      ∠AEC = ∠BEM (2 góc đối đỉnh)

       EC = EM (gt)

⇒ ΔACE = ΔBME (c.g.c)

⇒ ∠ACE = ∠BME (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong  ⇒ AC // MB

b) Xét ΔANF và ΔCBF có:

        AF = CF (F là trung điểm của AC)

        ∠AFN = ∠CFB (2 góc đối đỉnh)

         FN = FB (gt)

⇒ ΔANF = ΔCBF (c.g.c)

⇒ ∠ANF = ∠CBF (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong ⇒ AN // BC (1)

Xét ΔAME và ΔBCE có:

      AE = BE (E là trung điểm của AB)

      ∠AEM = ∠BEC (2 góc đối đỉnh)

       EM = EC (gt)

⇒ ΔAME = ΔBCE (c.g.c)

⇒ ∠AME = ∠BCE (2 góc tương ứng)

mà 2 góc ở vị trí so le trong ⇒ AM // BC (2)

Từ (1) và (2) ⇒ 3 điểm M, A, N thẳng hàng

c) Ta có: ΔANF = ΔCBF (theo b)

⇒ AN = BC (2 cạnh tương ứng) (3)

Ta có: ΔAME = ΔBCE (theo b)

⇒ AM = BC (2 cạnh tương ứng) (4)

Từ (3) và (4) ⇒ AM = AN

   Cho xin 5*và ctlhn ạ

 

image

Thảo luận

-- Chúc bạn học tốt
-- Sao lại 2*
-- Mk có hình đầy đủ mà
-- :))
-- Cho mk xin thêm ctlhn nha
-- Please
-- lạc đề mờ
-- Sao lại lạc vại

Lời giải 2 :

Đáp án:

a) Xét ΔABF và ΔCNF có:

       AF = CF (F là trung điểm của AC)

        ∠AFB = CFN (2 góc đối đỉnh)

        FB = FN (gt)

⇒ ΔABF = ΔCNF (c.g.c)

⇒ ∠ABF = ∠CNF (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong  ⇒ AB // NC

Xét ΔACE và ΔBME có:

      AE = BE (E là trung điểm của AB)

      ∠AEC = ∠BEM (2 góc đối đỉnh)

       EC = EM (gt)

⇒ ΔACE = ΔBME (c.g.c)

⇒ ∠ACE = ∠BME (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong  ⇒ AC // MB

b) Xét ΔANF và ΔCBF có:

        AF = CF (F là trung điểm của AC)

        ∠AFN = ∠CFB (2 góc đối đỉnh)

         FN = FB (gt)

⇒ ΔANF = ΔCBF (c.g.c)

⇒ ∠ANF = ∠CBF (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong ⇒ AN // BC (1)

Xét ΔAME và ΔBCE có:

      AE = BE (E là trung điểm của AB)

      ∠AEM = ∠BEC (2 góc đối đỉnh)

       EM = EC (gt)

⇒ ΔAME = ΔBCE (c.g.c)

⇒ ∠AME = ∠BCE (2 góc tương ứng)

mà 2 góc ở vị trí so le trong ⇒ AM // BC (2)

Từ (1) và (2) ⇒ 3 điểm M, A, N thẳng hàng

c) Ta có: ΔANF = ΔCBF (theo b)

⇒ AN = BC (2 cạnh tương ứng) (3)

Ta có: ΔAME = ΔBCE (theo b)

⇒ AM = BC (2 cạnh tương ứng) (4)

Từ (3) và (4) ⇒ AM = AN

 

Giải thích các bước giải:

 

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự 7

Lớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK