Đáp án:
Giải thích các bước giải:
16/
\(\Delta ABC\) cân tại \(A\) (giả thiết)
\( \Rightarrow \left\{ \begin{array}{l}
AB = AC\\
\widehat {ABC} = \widehat {ACB}
\end{array} \right.\) (tính chất tam giác cân)
Vì \(BD, CE\) lần lượt là phân giác của \(\widehat {ABC}\) và \(\widehat {ACB}\) (giả thiết)
\( \Rightarrow \left\{ \begin{array}{l}
\widehat {{B_1}} = \widehat {{B_2}} = \dfrac{{\widehat {ABC}}}{2}\\
\widehat {{C_1}} = \widehat {{C_2}} = \dfrac{{\widehat {ACB}}}{2}
\end{array} \right.\) (tính chất tia phân giác)
Mà \(\widehat {ABC} = \widehat {ACB}\) (chứng minh trên)
\( \Rightarrow \widehat {{B_1}} = \widehat {{B_2}} = \widehat {{C_1}} = \widehat {{C_2}}\)
Xét \(∆ABD\) và \(∆ACE\) có:
+) \(AB = AC\) (chứng minh trên)
+) \(\widehat{A}\) chung
+) \(\widehat {{B_1}} = \widehat {{C_1}}\) (chứng minh trên)
\( \Rightarrow \Delta ABD = \Delta ACE{\rm{ }}\left( {g.c.g} \right) \)
\(\Rightarrow A{\rm{D}} = A{\rm{E}}\) (\(2\) cạnh tương ứng).
Ta có \(AD = AE\) (chứng minh trên) nên \(∆ADE\) cân tại \(A\) (dấu hiệu nhận biết tam giác cân)
\( \Rightarrow \widehat {A{\rm{ED}}} = \widehat {AD{\rm{E}}}\) (tính chất tam giác cân)
Xét \(∆ADE\) có: \(\widehat {A{\rm{ED}}} + \widehat {AD{\rm{E}}} + \widehat A = {180^0}\) (định lý tổng ba góc trong tam giác)
\(\begin{array}{l}
\Rightarrow 2\widehat {A{\rm{ED}}} + \widehat A = {180^0}\\
\Rightarrow \widehat {A{\rm{ED}}} = \dfrac{{{{180}^0} - \widehat A}}{2}\left( 1 \right)
\end{array}\)
Xét \(∆ABC\) có: \(\widehat A +\widehat {ABC} + \widehat {ACB} = {180^0}\) (định lý tổng ba góc trong tam giác)
Mà \(\widehat {ABC} = \widehat {ACB}\) (chứng minh trên)
\(\begin{array}{l}
\Rightarrow \widehat {2ABC} + \widehat A = {180^0}\\
\Rightarrow \widehat {ABC}= \dfrac{{{{180}^0} - \widehat A}}{2}\left( 2 \right)
\end{array}\)
Từ (1) và (2) \(\Rightarrow \widehat{A{\rm{ED}}}\) = \(\widehat{ABC}\), mà hai góc này là hai góc đồng vị nên suy ra \(DE // BC\) (dấu hiệu nhận biết hai đường thẳng song song)
Do đó \(BEDC\) là hình thang (dấu hiệu nhận biết hình thang).
Lại có \(\widehat{ABC}\) = \(\widehat{ACB}\) (chứng minh trên)
Nên \(BEDC\) là hình thang cân (dấu hiệu nhận biết hình thang cân)
Ta có:
\(DE//BC \Rightarrow \widehat {{D_1}} = \widehat {{B_2}}\) (so le trong)
Lại có \(\widehat{B_{2}}\) = \(\widehat{B_{1}}\) (chứng minh trên) nên \(\widehat{B_{1}}\) = \(\widehat{{D_{1}}}\)
\( \Rightarrow \Delta EB{\rm{D}}\) cân tại \(E\) (dấu hiệu nhận biết tam giác cân)
\( \Rightarrow EB = E{\rm{D}}\) (tính chất tam giác cân).
Vậy \(BEDC\) là hình thang cân có đáy nhỏ bằng cạnh bên.
17/
Gọi \(E\) là giao điểm của \(AC\) và \(BD.\)
Xét \(∆ECD\) có: \(\widehat {{C_1}} = \widehat {{D_1}}\) (giả thiết)
\(\Rightarrow \Delta EC{\rm{D}}\) cân tại \(E\) (dấu hiệu nhận biết tam giác cân).
\( \Rightarrow EC = E{\rm{D}}\) (tính chất tam giác cân) (1)
Ta có:
\({\rm{AB//DC}}\left( \text{giả thiết} \right) \)\(\;\Rightarrow \left\{ \begin{array}{l}
\widehat {BA{\rm{E}}} = \widehat {{C_1}}\\
\widehat {AB{\rm{E}}} = \widehat {{D_1}}
\end{array} \right.\left( \text{so le trong} \right)\)
Mà: \(\widehat {{C_1}} = \widehat {{D_1}}\left( \text{giả thiết} \right) \Rightarrow \widehat {BA{\rm{E}}} = \widehat {AB{\rm{E}}}\) \( \Rightarrow \Delta ABE\) cân tại \(E\) (dấu hiệu nhận biết tam giác cân)
\( \Rightarrow AE = BE\) (tính chất tam giác cân) (2)
Lại có:
\(\left\{ \begin{array}{l}
AC = A{\rm{E}} + EC\\
B{\rm{D}} = BE + DE
\end{array} \right.\;\left( 3 \right)\)
Từ (1), (2) và (3) suy ra \(AC = BD.\)
Suy ra hình thang \(ABCD\) là hình thang cân
18/
a) \(E\) thuộc đường thẳng \(DC\) nên \(CE // AB.\)
Hình thang \(ABEC\; (AB // CE)\) có hai cạnh bên \(AC, BE\) song song (giả thiết) \( \Rightarrow AC = BE\) (1) (nếu một hình thang có hai cạnh bên song song thì hai cạnh bên bằng nhau )
Lại có: \(AC = BD\) (giả thiết) (2)
Từ (1) và (2) suy ra \(BE = BD\) \( \Rightarrow \Delta BED\) cân tại \(B\) (dấu hiệu nhận biết tam giác cân).
b) Ta có \(AC{\rm{ }}//{\rm{ }}BE \Rightarrow \widehat {{C_1}} = \widehat E\) (2 góc đồng vị) (3)
\(∆BDE\) cân tại \(B\) (chứng minh trên) \( \Rightarrow \widehat {{D_1}} = \widehat E\) (4)
Từ (3) và (4) \( \Rightarrow \widehat {{D_1}} = \widehat {{C_1}}\)
Xét \(∆ACD\) và \( ∆BDC\) có:
+) \(AC = BD\) (giả thiết)
+) \(\widehat {{C_1}} = \widehat {{D_1}}\) (chứng minh trên)
+) \(CD\) chung
Suy ra \(∆ACD = ∆BDC\) (c.g.c)
c) Ta có: \(∆ACD = ∆BDC\) (chứng minh trên)
\( \Rightarrow \widehat {A{\rm{D}}C} = \widehat {BCD}\) (\(2\) góc tương ứng)
Hình thang \(ABCD\) có hai góc kề một đáy bằng nhau nên là hình thang cân.
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm thứ ba ở cấp trung học cơ sở, học tập bắt đầu nặng dần, sang năm lại là năm cuối cấp áp lực lớn dần nhưng các em vẫn phải chú ý sức khỏe nhé!
Nguồn : ADMIN :))Xem thêm tại https://loigiaisgk.com/cau-hoi or https://giaibtsgk.com/cau-hoi
Copyright © 2021 HOCTAPSGK