Câu 1:
Gọi số học sinh khối 6 la x
biết x thuộc N, 120<x<200
=> x+1 chia hết cho 12 và 18
Ta có: 12=22.3; 18=2.32
=> BCNN (12;18)=22.32=36
BC(12;18)= B(36) = {0;36;72;108;144;180;216;....}
Vì 120<x<200 nên a+1=144,+a+1=180 => a=143 hoặc a=179
Vậy số học sinh khối 6 là 143 hoặc 179 em
Câu 2:
Gọi số bạn được chia là a ta có (a thuộc tập n )
126=2.3.7; 198=2.32.11; 144=24.32
UCLN là 2.3 = 6 => có 6 bạn
Vậy mỗi bạn có
126:6=21 bóng đỏ
198:6=33 bóng xanh
144:6=24 bóng vàng
Câu 3:
Gọi số thứ nhất là n, số thứ hai là n+1, ƯC (n, n+1)=a
Ta có: n chia hết cho a (1)
n+1 chia hết cho a (2)
Từ (1) và (2) ta được:
n+1-n chia hết cho a
=> 1 chia hết cho a
=> a=1
=> ƯC (n, n+1) = 1
=> n và n+1 là hai số nguyên tố cùng nhau.
Vậy 2 số tự nhiên liên tiếp là hai số nguyên tố cùng nhau
Câu 4:
Đặt 2 số tự nhiên đó là: a = 12.m và b = 12.n
với UCLN (m; n) = 1
ta có: a + b = 168 => 12.m + 12.n = 168
=> (m + n).12 = 168 => m + n = 14
Câu 5:
Gọi 2 số tự nhiên là a và b
Có a – b = 168
Hay ta có a = 56m, b = 56n (m, n nguyên tố cùng nhau)
Có 56m – 56n = 168 => 56.(m - n) = 168 hay m – n = 3
Lại có 600 < 56.m và 56.n < 800 => 10 < m, n < 15
Vậy m = 14, n = 11
Hai số cần tìm là 784 và 616
Câu 6:
Ta có:3n+1 chia hết cho d => 4(3n+1) chia hết cho d => 12n+4 d
4n+1 chia hết cho d => 3(3n+1) chia hết cho d => 12n+3 d
(12n+4 )- (12n+3) chia hết cho d
1 chia hết cho d
vậy 3n+1 và 4n+1 là hai số nguyên tố cùng nhau
Đáp án:
Bài .1 Số học sinh khối 6 của một trường trong khoảng từ 120 đến 200 học sinh. Khi xếp hàng 12, hàng 18 đều thiếu 1 học sinh. Tính số học sinh đó.
bài giải
Gọi số học sinh khối 6 la x
biết x thuộc N, 120<x<200
=> x+1 chia hết cho 12 và 18
Ta có: 12=22.3; 18=2.32
=> BCNN (12;18)=22.32=36
BC(12;18)= B(36) = {0;36;72;108;144;180;216;....}
Vì 120<x<200 nên a+1=144,+a+1=180 => a=143 hoặc a=179
Vậy số học sinh khối 6 là 143 hoặc 179 em
Bài 2. Có 126 quả bóng đỏ, 198 quả bóng xanh và 144 quả bóng vàng. Hỏi số bóng trên chia cho nhiều nhất là bao nhiêu bạn để số quả bóng đỏ, bóng xanh, bóng vàng của mỗi bạn đều như nhau?
bài giải
Gọi số bạn được chia là a ta có (a thuộc tập n )
126=2.3.7; 198=2.32.11; 144=24.32
UCLN là 2.3 = 6 => có 6 bạn
Vậy mỗi bạn có
126:6=21 bóng đỏ
198:6=33 bóng xanh
144:6=24 bóng vàng
Bài 3. Chứng minh rằng hai số tự nhiên liên tiếp nguyên tố cùng nhau.
bài giải
Gọi số thứ nhất là n, số thứ hai là n+1, ƯC (n, n+1)=a
Ta có: n chia hết cho a (1)
n+1 chia hết cho a (2)
Từ (1) và (2) ta được:
n+1-n chia hết cho a
=> 1 chia hết cho a
=> a=1
=> ƯC (n, n+1) = 1
=> n và n+1 là hai số nguyên tố cùng nhau.
Vậy 2 số tự nhiên liên tiếp là hai số nguyên tố cùng nhau
Bài 4. Tìm hai số tự nhiên biết rằng tổng của chúng là 168, ƯCLN của chúng bằng 12.
bài giải
Đặt 2 số tự nhiên đó là: a = 12.m và b = 12.n
với UCLN (m; n) = 1
ta có: a + b = 168 => 12.m + 12.n = 168
=> (m + n).12 = 168 => m + n = 14
Bài 5. Tìm hai số tự nhiên biết hiệu của chúng là 168, ƯCLN của chúng bằng 56, các số đó trong khoảng từ 600 đến 800.
bài giải
Gọi 2 số tự nhiên là a và b
Có a – b = 168
Hay ta có a = 56m, b = 56n (m, n nguyên tố cùng nhau)
Có 56m – 56n = 168 => 56.(m - n) = 168 hay m – n = 3
Lại có 600 < 56.m và 56.n < 800 => 10 < m, n < 15
Vậy m = 14, n = 11
Hai số cần tìm là 784 và 616
Bài 6. Chứng minh rằng: 3n + 1 và 4n + 1 (n thuộc N) là 2 nguyên tố cùng nhau.
bài giải
Ta có:3n+1 chia hết cho d => 4(3n+1) chia hết cho d => 12n+4 d
4n+1 chia hết cho d => 3(3n+1) chia hết cho d => 12n+3 d
(12n+4 )- (12n+3) chia hết cho d
1 chia hết cho d
vậy 3n+1 và 4n+1 là hai số nguyên tố cùng nhau
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 6 - Là năm đầu tiên của cấp trung học cơ sở. Được sống lại những khỉ niệm như ngày nào còn lần đầu đến lớp 1, được quen bạn mới, ngôi trường mới, một tương lai mới!
Nguồn : ADMIN :))Xem thêm tại https://loigiaisgk.com/cau-hoi or https://giaibtsgk.com/cau-hoi
Copyright © 2021 HOCTAPSGK